Abstract
A fluorescent nucleic acid stain that does not penetrate living cells was used to assess the integrity of the plasma membranes of bacteria. SYTOX Green nucleic acid stain is an unsymmetrical cyanine dye with three positive charges that is completely excluded from live eukaryotic and prokaryotic cells. Binding of SYTOX Green stain to nucleic acids resulted in a > 500-fold enhancement in fluorescence emission (absorption and emission maxima at 502 and 523 nm, respectively), rendering bacteria with compromised plasma membranes brightly green fluorescent. SYTOX Green stain is readily excited by the 488-nm line of the argon ion laser. The fluorescence signal from membrane-compromised bacteria labeled with SYTOX Green stain was typically > 10-fold brighter than that from intact organisms. Bacterial suspensions labeled with SYTOX Green stain emitted green fluorescence in proportion to the fraction of permeabilized cells in the population, which was quantified by microscopy, fluorometry, or flow cytometry. Flow cytometric and fluorometric approaches were used to quantify the effect of beta-lactam antibiotics on the cell membrane integrity of Escherichia coli. Detection and discrimination of live and permeabilized cells labeled with SYTOX Green stain by flow cytometry were markedly improved over those by propidium iodide-based tests. These studies showed that bacterial labeling with SYTOX Green stain is an effective alternative to conventional methods for measuring bacterial viability and antibiotic susceptibility.
Full Text
The Full Text of this article is available as a PDF (391.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Althouse G. C., Hopkins S. M. Assessment of boar sperm viability using a combination of two fluorophores. Theriogenology. 1995 Feb;43(3):595–603. doi: 10.1016/0093-691x(94)00065-3. [DOI] [PubMed] [Google Scholar]
- Boye E., Løbner-Olesen A. Bacterial growth control studied by flow cytometry. Res Microbiol. 1991 Feb-Apr;142(2-3):131–135. doi: 10.1016/0923-2508(91)90020-b. [DOI] [PubMed] [Google Scholar]
- Boye E., Steen H. B., Skarstad K. Flow cytometry of bacteria: a promising tool in experimental and clinical microbiology. J Gen Microbiol. 1983 Apr;129(4):973–980. doi: 10.1099/00221287-129-4-973. [DOI] [PubMed] [Google Scholar]
- Cantinieaux B., Courtoy P., Fondu P. Accurate flow cytometric measurement of bacteria concentrations. Pathobiology. 1993;61(2):95–97. doi: 10.1159/000163768. [DOI] [PubMed] [Google Scholar]
- Cohen C. Y., Sahar E. Rapid flow cytometric bacterial detection and determination of susceptibility to amikacin in body fluids and exudates. J Clin Microbiol. 1989 Jun;27(6):1250–1256. doi: 10.1128/jcm.27.6.1250-1256.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Durodie J., Coleman K., Simpson I. N., Loughborough S. H., Winstanley D. W. Rapid detection of antimicrobial activity using flow cytometry. Cytometry. 1995 Dec 1;21(4):374–377. doi: 10.1002/cyto.990210409. [DOI] [PubMed] [Google Scholar]
- Fouchet P., Jayat C., Héchard Y., Ratinaud M. H., Frelat G. Recent advances of flow cytometry in fundamental and applied microbiology. Biol Cell. 1993;78(1-2):95–109. doi: 10.1016/0248-4900(93)90120-4. [DOI] [PubMed] [Google Scholar]
- Gant V. A., Warnes G., Phillips I., Savidge G. F. The application of flow cytometry to the study of bacterial responses to antibiotics. J Med Microbiol. 1993 Aug;39(2):147–154. doi: 10.1099/00222615-39-2-147. [DOI] [PubMed] [Google Scholar]
- Garner D. L., Johnson L. A., Yue S. T., Roth B. L., Haugland R. P. Dual DNA staining assessment of bovine sperm viability using SYBR-14 and propidium iodide. J Androl. 1994 Nov-Dec;15(6):620–629. [PubMed] [Google Scholar]
- Jepras R. I., Carter J., Pearson S. C., Paul F. E., Wilkinson M. J. Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl Environ Microbiol. 1995 Jul;61(7):2696–2701. doi: 10.1128/aem.61.7.2696-2701.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jernaes M. W., Steen H. B. Staining of Escherichia coli for flow cytometry: influx and efflux of ethidium bromide. Cytometry. 1994 Dec 1;17(4):302–309. doi: 10.1002/cyto.990170405. [DOI] [PubMed] [Google Scholar]
- Kepner R. L., Jr, Pratt J. R. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev. 1994 Dec;58(4):603–615. doi: 10.1128/mr.58.4.603-615.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Langsrud S., Sundheim G. Flow cytometry for rapid assessment of viability after exposure to a quaternary ammonium compound. J Appl Bacteriol. 1996 Oct;81(4):411–418. doi: 10.1111/j.1365-2672.1996.tb03527.x. [DOI] [PubMed] [Google Scholar]
- López-Amorós R., Comas J., Vives-Rego J. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl Environ Microbiol. 1995 Jul;61(7):2521–2526. doi: 10.1128/aem.61.7.2521-2526.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manafi M., Kneifel W., Bascomb S. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol Rev. 1991 Sep;55(3):335–348. doi: 10.1128/mr.55.3.335-348.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mansour J. D., Schram J. L., Schulte T. H. Fluorescent staining of intracellular and extracellular bacteria in blood. J Clin Microbiol. 1984 Apr;19(4):453–456. doi: 10.1128/jcm.19.4.453-456.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mason D. J., Allman R., Stark J. M., Lloyd D. Rapid estimation of bacterial antibiotic susceptibility with flow cytometry. J Microsc. 1994 Oct;176(Pt 1):8–16. doi: 10.1111/j.1365-2818.1994.tb03494.x. [DOI] [PubMed] [Google Scholar]
- Mason D. J., Lopéz-Amorós R., Allman R., Stark J. M., Lloyd D. The ability of membrane potential dyes and calcafluor white to distinguish between viable and non-viable bacteria. J Appl Bacteriol. 1995 Mar;78(3):309–315. doi: 10.1111/j.1365-2672.1995.tb05031.x. [DOI] [PubMed] [Google Scholar]
- McFeters G. A., Yu F. P., Pyle B. H., Stewart P. S. Physiological assessment of bacteria using fluorochromes. J Microbiol Methods. 1995 Jan;21(1):1–13. doi: 10.1016/0167-7012(94)00027-5. [DOI] [PubMed] [Google Scholar]
- Monfort P., Baleux B. Comparison of flow cytometry and epifluorescence microscopy for counting bacteria in aquatic ecosystems. Cytometry. 1992;13(2):188–192. doi: 10.1002/cyto.990130213. [DOI] [PubMed] [Google Scholar]
- Obernesser M. S., Socransky S. S., Stashenko P. Limit of resolution of flow cytometry for the detection of selected bacterial species. J Dent Res. 1990 Sep;69(9):1592–1598. doi: 10.1177/00220345900690091101. [DOI] [PubMed] [Google Scholar]
- Ordóez J. V., Wehman N. M. Rapid flow cytometric antibiotic susceptibility assay for Staphylococcus aureus. Cytometry. 1993 Oct;14(7):811–818. doi: 10.1002/cyto.990140714. [DOI] [PubMed] [Google Scholar]
- Papadopoulos N. G., Dedoussis G. V., Spanakos G., Gritzapis A. D., Baxevanis C. N., Papamichail M. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. J Immunol Methods. 1994 Dec 28;177(1-2):101–111. doi: 10.1016/0022-1759(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Phillips A. P., Martin K. L. Limitations of flow cytometry for the specific detection of bacteria in mixed populations. J Immunol Methods. 1988 Jan 21;106(1):109–117. doi: 10.1016/0022-1759(88)90278-5. [DOI] [PubMed] [Google Scholar]
- Pore R. S. Antibiotic susceptibility testing by flow cytometry. J Antimicrob Chemother. 1994 Nov;34(5):613–627. doi: 10.1093/jac/34.5.613. [DOI] [PubMed] [Google Scholar]
- Porter J., Diaper J., Edwards C., Pickup R. Direct measurements of natural planktonic bacterial community viability by flow cytometry. Appl Environ Microbiol. 1995 Jul;61(7):2783–2786. doi: 10.1128/aem.61.7.2783-2786.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pyle B. H., Broadaway S. C., McFeters G. A. A rapid, direct method for enumerating respiring enterohemorrhagic Escherichia coli O157:H7 in water. Appl Environ Microbiol. 1995 Jul;61(7):2614–2619. doi: 10.1128/aem.61.7.2614-2619.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Radcliff G., Waite R., LeFevre J., Poulik M. D., Callewaert D. M. Quantification of effector/target conjugation involving natural killer (NK) or lymphokine activated killer (LAK) cells by two-color flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):281–292. doi: 10.1016/0022-1759(91)90199-p. [DOI] [PubMed] [Google Scholar]
- Schaule G., Flemming H. C., Ridgway H. F. Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking water. Appl Environ Microbiol. 1993 Nov;59(11):3850–3857. doi: 10.1128/aem.59.11.3850-3857.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Waaij L. A., Mesander G., Limburg P. C., van der Waaij D. Direct flow cytometry of anaerobic bacteria in human feces. Cytometry. 1994 Jul 1;16(3):270–279. doi: 10.1002/cyto.990160312. [DOI] [PubMed] [Google Scholar]