Abstract
The glnA gene encoding glutamine synthetase was cloned from the hyperthermophilic archaeon Pyrococcus sp. strain KOD1, and its nucleotide sequence was determined. The glnA gene was expressed in Escherichia coli ME8459 (glnA mutant strain), and the protein was purified to homogeneity and shown to be functional in a dodecameric from (637,000 Da), exhibiting both transferase and synthetase activities. However, kinetic studies indicated that the enzyme possessed low biosynthetic activity, suggesting that the reaction was biased towards glutamate production. The optimum temperature for both activities was 60 degrees C, which was lower than the optimal growth temperature of KOD1. Recombinant KOD1 GlnA exhibited different optimum pHs depending on the reaction employed (pH 7.8 for the synthetase reaction and pH 7.2 for the transferase reaction). Of the various nucleoside triphosphates tested, GTP as well as ATP was involved in the synthetase reaction.
Full Text
The Full Text of this article is available as a PDF (254.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almassy R. J., Janson C. A., Hamlin R., Xuong N. H., Eisenberg D. Novel subunit-subunit interactions in the structure of glutamine synthetase. 1986 Sep 25-Oct 1Nature. 323(6086):304–309. doi: 10.1038/323304a0. [DOI] [PubMed] [Google Scholar]
- Bender R. A., Janssen K. A., Resnick A. D., Blumenberg M., Foor F., Magasanik B. Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol. 1977 Feb;129(2):1001–1009. doi: 10.1128/jb.129.2.1001-1009.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhatnagar L., Zeikus J. G., Aubert J. P. Purification and characterization of glutamine synthetase from the archaebacterium Methanobacterium ivanovi. J Bacteriol. 1986 Feb;165(2):638–643. doi: 10.1128/jb.165.2.638-643.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. R., Masuchi Y., Robb F. T., Doolittle W. F. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol. 1994 Jun;38(6):566–576. doi: 10.1007/BF00175876. [DOI] [PubMed] [Google Scholar]
- Consalvi V., Chiaraluce R., Politi L., Gambacorta A., De Rosa M., Scandurra R. Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. Eur J Biochem. 1991 Mar 14;196(2):459–467. doi: 10.1111/j.1432-1033.1991.tb15837.x. [DOI] [PubMed] [Google Scholar]
- Consalvi V., Chiaraluce R., Politi L., Vaccaro R., De Rosa M., Scandurra R. Extremely thermostable glutamate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Eur J Biochem. 1991 Dec 18;202(3):1189–1196. doi: 10.1111/j.1432-1033.1991.tb16489.x. [DOI] [PubMed] [Google Scholar]
- Deuel T. F., Stadtman E. R. Some kinetic properties of Bacillus subtilis glutamine synthetase. J Biol Chem. 1970 Oct 25;245(20):5206–5213. [PubMed] [Google Scholar]
- Elmorjani K., Liotenberg S., Houmard J., de Marsac N. T. Molecular characterization of the gene encoding glutamine synthetase in the cyanobacterium Calothrix sp. PCC 7601. Biochem Biophys Res Commun. 1992 Dec 30;189(3):1296–1302. doi: 10.1016/0006-291x(92)90214-6. [DOI] [PubMed] [Google Scholar]
- Fujiwara S., Lee S. G., Haruki M., Kanaya S., Takagi M., Imanaka T. Unusual enzyme characteristics of aspartyl-tRNA synthetase from hyperthermophilic archaeon Pyrococcus sp. KOD1. FEBS Lett. 1996 Sep 23;394(1):66–70. doi: 10.1016/0014-5793(96)00904-0. [DOI] [PubMed] [Google Scholar]
- Fujiwara S., Okuyama S., Imanaka T. The world of archaea: genome analysis, evolution and thermostable enzymes. Gene. 1996 Nov 7;179(1):165–170. doi: 10.1016/s0378-1119(96)00428-3. [DOI] [PubMed] [Google Scholar]
- Imanaka T., Lee S., Takagi M., Fujiwara S. Aspartyl-tRNA synthetase of the hyperthermophilic archaeon Pyrococcus sp. KOD1 has a chimerical structure of eukaryotic and bacterial enzymes. Gene. 1995 Oct 16;164(1):153–156. doi: 10.1016/0378-1119(95)00491-n. [DOI] [PubMed] [Google Scholar]
- Ishino Y., Morgenthaler P., Hottinger H., Söll D. Organization and nucleotide sequence of the glutamine synthetase (glnA) gene from Lactobacillus delbrueckii subsp. bulgaricus. Appl Environ Microbiol. 1992 Sep;58(9):3165–3169. doi: 10.1128/aem.58.9.3165-3169.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iwabe N., Kuma K., Hasegawa M., Osawa S., Miyata T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9355–9359. doi: 10.1073/pnas.86.23.9355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janson C. A., Kayne P. S., Almassy R. J., Grunstein M., Eisenberg D. Sequence of glutamine synthetase from Salmonella typhimurium and implications for the protein structure. Gene. 1986;46(2-3):297–300. doi: 10.1016/0378-1119(86)90415-4. [DOI] [PubMed] [Google Scholar]
- Janssen P. J., Jones W. A., Jones D. T., Woods D. R. Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum. J Bacteriol. 1988 Jan;170(1):400–408. doi: 10.1128/jb.170.1.400-408.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Juszczak A., Aono S., Adams M. W. The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem. 1991 Jul 25;266(21):13834–13841. [PubMed] [Google Scholar]
- Kobayashi T., Higuchi S., Kimura K., Kudo T., Horikoshi K. Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J Biochem. 1995 Sep;118(3):587–592. doi: 10.1093/oxfordjournals.jbchem.a124950. [DOI] [PubMed] [Google Scholar]
- Kumada Y., Benson D. R., Hillemann D., Hosted T. J., Rochefort D. A., Thompson C. J., Wohlleben W., Tateno Y. Evolution of the glutamine synthetase gene, one of the oldest existing and functioning genes. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3009–3013. doi: 10.1073/pnas.90.7.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mill J. F., Mearow K. M., Purohit H. J., Haleem-Smith H., King R., Freese E. Cloning and functional characterization of the rat glutamine synthetase gene. Brain Res Mol Brain Res. 1991 Feb;9(3):197–207. doi: 10.1016/0169-328x(91)90003-g. [DOI] [PubMed] [Google Scholar]
- Morikawa M., Izawa Y., Rashid N., Hoaki T., Imanaka T. Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp. Appl Environ Microbiol. 1994 Dec;60(12):4559–4566. doi: 10.1128/aem.60.12.4559-4566.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mukund S., Adams M. W. The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J Biol Chem. 1991 Aug 5;266(22):14208–14216. [PubMed] [Google Scholar]
- Ohshima T., Nishida N. Purification and properties of extremely thermostable glutamate dehydrogenases from two hyperthermophilic archaebacteria, Pyrococcus woesei and Pyrococcus furiosus. Biosci Biotechnol Biochem. 1993 Jun;57(6):945–951. doi: 10.1271/bbb.57.945. [DOI] [PubMed] [Google Scholar]
- Possot O., Sibold L., Aubert J. P. Nucleotide sequence and expression of the glutamine synthetase structural gene, glnA, of the archaebacterium Methanococcus voltae. Res Microbiol. 1989 Jul-Aug;140(6):355–371. doi: 10.1016/0923-2508(89)90012-0. [DOI] [PubMed] [Google Scholar]
- Rhee S. G., Park S. C., Koo J. H. The role of adenylyltransferase and uridylyltransferase in the regulation of glutamine synthetase in Escherichia coli. Curr Top Cell Regul. 1985;27:221–232. doi: 10.1016/b978-0-12-152827-0.50026-8. [DOI] [PubMed] [Google Scholar]
- Rivera M. C., Lake J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science. 1992 Jul 3;257(5066):74–76. doi: 10.1126/science.1621096. [DOI] [PubMed] [Google Scholar]
- Sanangelantoni A. M., Barbarini D., Di Pasquale G., Cammarano P., Tiboni O. Cloning and nucleotide sequence of an archaebacterial glutamine synthetase gene: phylogenetic implications. Mol Gen Genet. 1990 Apr;221(2):187–194. doi: 10.1007/BF00261719. [DOI] [PubMed] [Google Scholar]
- Sanangelantoni A. M., Forlani G., Ambroselli F., Cammarano P., Tiboni O. The glnA gene of the extremely thermophilic eubacterium Thermotoga maritima: cloning, primary structure, and expression in Escherichia coli. J Gen Microbiol. 1992 Feb;138(2):383–393. doi: 10.1099/00221287-138-2-383. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scholz S., Sonnenbichler J., Schäfer W., Hensel R. Di-myo-inositol-1,1'-phosphate: a new inositol phosphate isolated from Pyrococcus woesei. FEBS Lett. 1992 Jul 20;306(2-3):239–242. doi: 10.1016/0014-5793(92)81008-a. [DOI] [PubMed] [Google Scholar]
- Shatters R. G., Liu Y., Kahn M. L. Isolation and characterization of a novel glutamine synthetase from Rhizobium meliloti. J Biol Chem. 1993 Jan 5;268(1):469–475. [PubMed] [Google Scholar]
- Stadtman E. R., Ginsburg A., Ciardi J. E., Yeh J., Hennig S. B., Shapiro B. M. Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylation and deadenylylation reactions. Adv Enzyme Regul. 1970;8:99–118. doi: 10.1016/0065-2571(70)90011-7. [DOI] [PubMed] [Google Scholar]
- Strauch M. A., Aronson A. I., Brown S. W., Schreier H. J., Sonenhein A. L. Sequence of the Bacillus subtilis glutamine synthetase gene region. Gene. 1988 Nov 30;71(2):257–265. doi: 10.1016/0378-1119(88)90042-x. [DOI] [PubMed] [Google Scholar]
- Streicher S. L., Tyler B. Purification of glutamine synthetase from a variety of bacteria. J Bacteriol. 1980 Apr;142(1):69–78. doi: 10.1128/jb.142.1.69-78.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tiboni O., Cammarano P., Sanangelantoni A. M. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J Bacteriol. 1993 May;175(10):2961–2969. doi: 10.1128/jb.175.10.2961-2969.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. E., Saraste M., Runswick M. J., Gay N. J. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1(8):945–951. doi: 10.1002/j.1460-2075.1982.tb01276.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woolfolk C. A., Shapiro B., Stadtman E. R. Regulation of glutamine synthetase. I. Purification and properties of glutamine synthetase from Escherichia coli. Arch Biochem Biophys. 1966 Sep 26;116(1):177–192. doi: 10.1016/0003-9861(66)90026-9. [DOI] [PubMed] [Google Scholar]