Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2543–2548. doi: 10.1128/aem.63.7.2543-2548.1997

Stabilization of lignin peroxidases in white rot fungi by tryptophan.

P J Collins 1, J A Field 1, P Teunissen 1, A D Dobson 1
PMCID: PMC168551  PMID: 9212404

Abstract

Supplementation of various cultures of white rot fungi with tryptophan was found to have a large stimulatory effect on lignin peroxidase activity levels. This enhancement was greater than that observed in the presence of the lignin peroxidase recycling agent veratryl alcohol. Using reverse transcription-PCR, we found that tryptophan does not act to induce lignin peroxidase expression at the level of gene transcription. Instead, the activity enhancement observed is likely to result from the protective effect of tryptophan against H2O2 inactivation. In experiments using a partially purified lignin peroxidase preparation, tryptophan and its derivative indole were determined to function in the same way as veratryl alcohol in converting compound II, an oxidized form of lignin peroxidase, to ferric enzyme, thereby completing the catalytic cycle. Furthermore, tryptophan was found to be a better substrate for lignin peroxidase than veratryl alcohol. Inclusion of either tryptophan or indole enhanced the oxidation of the azo dyes methyl orange and Eriochrome blue black. Stimulation of azo dye oxidations by veratryl alcohol has previously been shown to be due to its enzyme recycling function. Our data allow us to propose that tryptophan stabilizes lignin peroxidase by acting as a reductant for the enzyme.

Full Text

The Full Text of this article is available as a PDF (265.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barr D. P., Aust S. D. Pollutant degradation by white rot fungi. Rev Environ Contam Toxicol. 1994;138:49–72. doi: 10.1007/978-1-4612-2672-7_3. [DOI] [PubMed] [Google Scholar]
  2. Black A. K., Reddy C. A. Cloning and characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochem Biophys Res Commun. 1991 Aug 30;179(1):428–435. doi: 10.1016/0006-291x(91)91388-s. [DOI] [PubMed] [Google Scholar]
  3. Cancel A. M., Orth A. B., Tien M. Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Sep;59(9):2909–2913. doi: 10.1128/aem.59.9.2909-2913.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Candeias L. P., Folkes L. K., Porssa M., Parrick J., Wardman P. Rates of reaction of indoleacetic acids with horseradish peroxidase compound I and their dependence on the redox potentials. Biochemistry. 1996 Jan 9;35(1):102–108. doi: 10.1021/bi9514424. [DOI] [PubMed] [Google Scholar]
  5. Candeias L. P., Harvey P. J. Lifetime and reactivity of the veratryl alcohol radical cation. Implications for lignin peroxidase catalysis. J Biol Chem. 1995 Jul 14;270(28):16745–16748. doi: 10.1074/jbc.270.28.16745. [DOI] [PubMed] [Google Scholar]
  6. Collins P. J., Kotterman M., Field J. A., Dobson A. Oxidation of Anthracene and Benzo[a]pyrene by Laccases from Trametes versicolor. Appl Environ Microbiol. 1996 Dec;62(12):4563–4567. doi: 10.1128/aem.62.12.4563-4567.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edwards S. L., Raag R., Wariishi H., Gold M. H., Poulos T. L. Crystal structure of lignin peroxidase. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):750–754. doi: 10.1073/pnas.90.2.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eggert C., Temp U., Dean J. F., Eriksson K. E. A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 1996 Aug 5;391(1-2):144–148. doi: 10.1016/0014-5793(96)00719-3. [DOI] [PubMed] [Google Scholar]
  9. Eggert C., Temp U., Eriksson K. E. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol. 1996 Apr;62(4):1151–1158. doi: 10.1128/aem.62.4.1151-1158.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hammel K. E., Jensen K. A., Jr, Mozuch M. D., Landucci L. L., Tien M., Pease E. A. Ligninolysis by a purified lignin peroxidase. J Biol Chem. 1993 Jun 15;268(17):12274–12281. [PubMed] [Google Scholar]
  11. Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
  12. Hammel K. E., Mozuch M. D., Jensen K. A., Jr, Kersten P. J. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase. Biochemistry. 1994 Nov 15;33(45):13349–13354. doi: 10.1021/bi00249a022. [DOI] [PubMed] [Google Scholar]
  13. Johansson T., Welinder K. G., Nyman P. O. Isozymes of lignin peroxidase and manganese(II) peroxidase from the white-rot basidiomycete Trametes versicolor. II. Partial sequences, peptide maps, and amino acid and carbohydrate compositions. Arch Biochem Biophys. 1993 Jan;300(1):57–62. doi: 10.1006/abbi.1993.1008. [DOI] [PubMed] [Google Scholar]
  14. Joshi D. K., Gold M. H. Oxidation of dimethoxylated aromatic compounds by lignin peroxidase from Phanerochaete chrysosporium. Eur J Biochem. 1996 Apr 1;237(1):45–57. doi: 10.1111/j.1432-1033.1996.0045n.x. [DOI] [PubMed] [Google Scholar]
  15. Jönsson L., Nyman P. O. Characterization of a lignin peroxidase gene from the white-rot fungus Trametes versicolor. Biochimie. 1992 Feb;74(2):177–182. doi: 10.1016/0300-9084(92)90043-e. [DOI] [PubMed] [Google Scholar]
  16. Jönsson L., Nyman P. O. Tandem lignin peroxidase genes of the fungus Trametes versicolor. Biochim Biophys Acta. 1994 Aug 2;1218(3):408–412. doi: 10.1016/0167-4781(94)90194-5. [DOI] [PubMed] [Google Scholar]
  17. Kaal E. E., de Jong E., Field J. A. Stimulation of Ligninolytic Peroxidase Activity by Nitrogen Nutrients in the White Rot Fungus Bjerkandera sp. Strain BOS55. Appl Environ Microbiol. 1993 Dec;59(12):4031–4036. doi: 10.1128/aem.59.12.4031-4036.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Khindaria A., Yamazaki I., Aust S. D. Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry. 1996 May 21;35(20):6418–6424. doi: 10.1021/bi9601666. [DOI] [PubMed] [Google Scholar]
  19. Khindaria A., Yamazaki I., Aust S. D. Veratryl alcohol oxidation by lignin peroxidase. Biochemistry. 1995 Dec 26;34(51):16860–16869. doi: 10.1021/bi00051a037. [DOI] [PubMed] [Google Scholar]
  20. Kirk T. K., Farrell R. L. Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–505. doi: 10.1146/annurev.mi.41.100187.002341. [DOI] [PubMed] [Google Scholar]
  21. Koduri R. S., Tien M. Kinetic analysis of lignin peroxidase: explanation for the mediation phenomenon by veratryl alcohol. Biochemistry. 1994 Apr 12;33(14):4225–4230. doi: 10.1021/bi00180a016. [DOI] [PubMed] [Google Scholar]
  22. Marquez L., Wariishi H., Dunford H. B., Gold M. H. Spectroscopic and kinetic properties of the oxidized intermediates of lignin peroxidase from Phanerochaete chrysosporium. J Biol Chem. 1988 Aug 5;263(22):10549–10552. [PubMed] [Google Scholar]
  23. Paszczynski A., Crawford R. L. Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem Biophys Res Commun. 1991 Aug 15;178(3):1056–1063. doi: 10.1016/0006-291x(91)90999-n. [DOI] [PubMed] [Google Scholar]
  24. Poulos T. L., Edwards S. L., Wariishi H., Gold M. H. Crystallographic refinement of lignin peroxidase at 2 A. J Biol Chem. 1993 Feb 25;268(6):4429–4440. doi: 10.2210/pdb1lga/pdb. [DOI] [PubMed] [Google Scholar]
  25. Srebotnik E., Messner K., Foisner R. Penetrability of White Rot-Degraded Pine Wood by the Lignin Peroxidase of Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Nov;54(11):2608–2614. doi: 10.1128/aem.54.11.2608-2614.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tien M., Kirk T. K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete chrysosporium Burds. Science. 1983 Aug 12;221(4611):661–663. doi: 10.1126/science.221.4611.661. [DOI] [PubMed] [Google Scholar]
  27. Tien M. Properties of ligninase from Phanerochaete chrysosporium and their possible applications. Crit Rev Microbiol. 1987;15(2):141–168. doi: 10.3109/10408418709104456. [DOI] [PubMed] [Google Scholar]
  28. Tonon F., Odier E. Influence of Veratryl Alcohol and Hydrogen Peroxide on Ligninase Activity and Ligninase Production by Phanerochaete chrysosporium. Appl Environ Microbiol. 1988 Feb;54(2):466–472. doi: 10.1128/aem.54.2.466-472.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tuisel H., Sinclair R., Bumpus J. A., Ashbaugh W., Brock B. J., Aust S. D. Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys. 1990 May 15;279(1):158–166. doi: 10.1016/0003-9861(90)90476-f. [DOI] [PubMed] [Google Scholar]
  30. Urzúa U., Fernando Larrondo L., Lobos S., Larraín J., Vicuña R. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora. FEBS Lett. 1995 Sep 4;371(2):132–136. doi: 10.1016/0014-5793(95)00874-9. [DOI] [PubMed] [Google Scholar]
  31. Wariishi H., Gold M. H. Lignin peroxidase compound III. Mechanism of formation and decomposition. J Biol Chem. 1990 Feb 5;265(4):2070–2077. [PubMed] [Google Scholar]
  32. Wariishi H., Marquez L., Dunford H. B., Gold M. H. Lignin peroxidase compounds II and III. Spectral and kinetic characterization of reactions with peroxides. J Biol Chem. 1990 Jul 5;265(19):11137–11142. [PubMed] [Google Scholar]
  33. von Gromoff E. D., Treier U., Beck C. F. Three light-inducible heat shock genes of Chlamydomonas reinhardtii. Mol Cell Biol. 1989 Sep;9(9):3911–3918. doi: 10.1128/mcb.9.9.3911. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES