Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2578–2585. doi: 10.1128/aem.63.7.2578-2585.1997

Anaerobic and aerobic degradation of pyridine by a newly isolated denitrifying bacterium.

S K Rhee 1, G M Lee 1, J H Yoon 1, Y H Park 1, H S Bae 1, S T Lee 1
PMCID: PMC168555  PMID: 9212408

Abstract

New denitrifying bacteria that could degrade pyridine under both aerobic and anaerobic conditions were isolated from industrial wastewater. The successful enrichment and isolation of these strains required selenite as a trace element. These isolates appeared to be closely related to Azoarcus species according to the results of 16S rRNA sequence analysis. An isolated strain, pF6, metabolized pyridine through the same pathway under both aerobic and anaerobic conditions. Since pyridine induced NAD-linked glutarate-dialdehyde dehydrogenase and isocitratase activities, it is likely that the mechanism of pyridine degradation in strain pF6 involves N-C-2 ring cleavage. Strain pF6 could degrade pyridine in the presence of nitrate, nitrite, and nitrous oxide as electron acceptors. In a batch culture with 6 mM nitrate, degradation of pyridine and denitrification were not sensitively affected by the redox potential, which gradually decreased from 150 to -200 mV. In a batch culture with the nitrate concentration higher than 6 mM, nitrite transiently accumulated during denitrification significantly inhibited cell growth and pyridine degradation. Growth yield on pyridine decreased slightly under denitrifying conditions from that under aerobic conditions. Furthermore, when the pyridine concentration used was above 12 mM, the specific growth rate under denitrifying conditions was higher than that under aerobic conditions. Considering these characteristics, a newly isolated denitrifying bacterium, strain pF6, has advantages over strictly aerobic bacteria in field applications.

Full Text

The Full Text of this article is available as a PDF (212.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anders H. J., Kaetzke A., Kämpfer P., Ludwig W., Fuchs G. Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol. 1995 Apr;45(2):327–333. doi: 10.1099/00207713-45-2-327. [DOI] [PubMed] [Google Scholar]
  2. Berry D. F., Francis A. J., Bollag J. M. Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions. Microbiol Rev. 1987 Mar;51(1):43–59. doi: 10.1128/mr.51.1.43-59.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betlach M. R., Tiedje J. M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981 Dec;42(6):1074–1084. doi: 10.1128/aem.42.6.1074-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlson C. A., Ingraham J. L. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol. 1983 Apr;45(4):1247–1253. doi: 10.1128/aem.45.4.1247-1253.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cox J. C., Edwards E. S., DeMoss J. A. Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli. J Bacteriol. 1981 Mar;145(3):1317–1324. doi: 10.1128/jb.145.3.1317-1324.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolfing J., Zeyer J., Binder-Eicher P., Schwarzenbach R. P. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol. 1990;154(4):336–341. doi: 10.1007/BF00276528. [DOI] [PubMed] [Google Scholar]
  7. Evans P. J., Mang D. T., Kim K. S., Young L. Y. Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol. 1991 Apr;57(4):1139–1145. doi: 10.1128/aem.57.4.1139-1145.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fries M. R., Zhou J., Chee-Sanford J., Tiedje J. M. Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol. 1994 Aug;60(8):2802–2810. doi: 10.1128/aem.60.8.2802-2810.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HUGH R., LEIFSON E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953 Jul;66(1):24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hernandez D., Rowe J. J. Oxygen inhibition of nitrate uptake is a general regulatory mechanism in nitrate respiration. J Biol Chem. 1988 Jun 15;263(17):7937–7939. [PubMed] [Google Scholar]
  11. Hutchins S. R. Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl Environ Microbiol. 1991 Aug;57(8):2403–2407. doi: 10.1128/aem.57.8.2403-2407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones J. B., Stadtman T. C. Methanococcus vannielii: culture and effects of selenium and tungsten on growth. J Bacteriol. 1977 Jun;130(3):1404–1406. doi: 10.1128/jb.130.3.1404-1406.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kaiser J. P., Feng Y., Bollag J. M. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol Rev. 1996 Sep;60(3):483–498. doi: 10.1128/mr.60.3.483-498.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim S. B., Yoon J. H., Kim H., Lee S. T., Park Y. H., Goodfellow M. A phylogenetic analysis of the genus Saccharomonospora conducted with 16S rRNA gene sequences. Int J Syst Bacteriol. 1995 Apr;45(2):351–356. doi: 10.1099/00207713-45-2-351. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lin E. C., Iuchi S. Regulation of gene expression in fermentative and respiratory systems in Escherichia coli and related bacteria. Annu Rev Genet. 1991;25:361–387. doi: 10.1146/annurev.ge.25.120191.002045. [DOI] [PubMed] [Google Scholar]
  17. Lovley D. R., Lonergan D. J. Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15. Appl Environ Microbiol. 1990 Jun;56(6):1858–1864. doi: 10.1128/aem.56.6.1858-1864.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. OLSON J. A. The purification and properties of yeast isocitric lyase. J Biol Chem. 1959 Jan;234(1):5–10. [PubMed] [Google Scholar]
  19. Rabus R., Nordhaus R., Ludwig W., Widdel F. Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol. 1993 May;59(5):1444–1451. doi: 10.1128/aem.59.5.1444-1451.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rabus R., Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995 Feb;163(2):96–103. doi: 10.1007/BF00381782. [DOI] [PubMed] [Google Scholar]
  21. Rhee S. K., Lee G. M., Lee S. T. Influence of a supplementary carbon source on biodegradation of pyridine by freely suspended and immobilized Pimelobacter sp.. Appl Microbiol Biotechnol. 1996 Feb;44(6):816–822. doi: 10.1007/BF00178624. [DOI] [PubMed] [Google Scholar]
  22. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  23. Shukla O. P., Kaul S. M. A constitutive pyridine degrading system in Corynebacterium sp. Indian J Biochem Biophys. 1974 Sep;11(3):201–207. [PubMed] [Google Scholar]
  24. Sims G. K., Sommers L. E., Konopka A. Degradation of Pyridine by Micrococcus luteus Isolated from Soil. Appl Environ Microbiol. 1986 May;51(5):963–968. doi: 10.1128/aem.51.5.963-968.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tschech A., Fuchs G. Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol. 1987 Sep;148(3):213–217. doi: 10.1007/BF00414814. [DOI] [PubMed] [Google Scholar]
  26. Watson G. K., Cain R. B. Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. Biochem J. 1975 Jan;146(1):157–172. doi: 10.1042/bj1460157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yamamoto I., Saiki T., Liu S. M., Ljungdahl L. G. Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein. J Biol Chem. 1983 Feb 10;258(3):1826–1832. [PubMed] [Google Scholar]
  28. Yamazaki S. A selenium-containing hydrogenase from Methanococcus vannielii. Identification of the selenium moiety as a selenocysteine residue. J Biol Chem. 1982 Jul 25;257(14):7926–7929. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES