Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2607–2612. doi: 10.1128/aem.63.7.2607-2612.1997

Association of multiple-antibiotic-resistance profiles with point and nonpoint sources of Escherichia coli in Apalachicola Bay.

S Parveen 1, R L Murphree 1, L Edmiston 1, C W Kaspar 1, K M Portier 1, M L Tamplin 1
PMCID: PMC168557  PMID: 9212410

Abstract

A total of 765 Escherichia coli isolates from point and nonpoint sources were collected from the Apalachicola National Estuarine Research Reserve, and their multiple-antibiotic-resistance (MAR) profiles were determined with 10 antibiotics. E. coli isolates from point sources showed significantly greater resistance (P < 0.05) to antibiotics and higher MAR indices than isolates from nonpoint sources. Specifically, 65 different resistance patterns were observed among point source isolates, compared to 32 among nonpoint source isolates. Examples of this contrast in MAR profiles included percentages of isolates with resistance to chlortetracycline-sulfathiazole of 33.7% and to chlortetracycline-penicillin G-sulfathiazole of 14.5% for point source isolates versus 15.4 and 1.7%, respectively, for nonpoint source isolates. MAR profile homology, based on coefficient similarity, showed that isolates from point sources were markedly more diverse than isolates from nonpoint sources. Seven clusters were observed among point source isolates, with a coefficient value of approximately 1.8. In contrast, only four clusters were observed among nonpoint source isolates. Covariance matrices of data displayed six very distinct foci representing nonpoint source E. coli isolates. Importantly, E. coli isolates obtained directly from human and animal feces also clustered among point and nonpoint sources, respectively. We conclude that E. coli MAR profiles were associated with point and nonpoint sources of pollution within Apalachicola Bay and that this method may be useful in facilitating management of other estuaries.

Full Text

The Full Text of this article is available as a PDF (241.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Jebouri M. M. A note on antibiotic resistance in the bacterial flora of raw sewage and sewage-polluted River Tigris in Mosul, Iraq. J Appl Bacteriol. 1985 Apr;58(4):401–406. doi: 10.1111/j.1365-2672.1985.tb01479.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson E. S. Origin of transferable drug-resistance factors in the enterobacteriaceae. Br Med J. 1965 Nov 27;2(5473):1289–1291. doi: 10.1136/bmj.2.5473.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson E. S. The ecology of transferable drug resistance in the enterobacteria. Annu Rev Microbiol. 1968;22:131–180. doi: 10.1146/annurev.mi.22.100168.001023. [DOI] [PubMed] [Google Scholar]
  4. Baya A. M., Brayton P. R., Brown V. L., Grimes D. J., Russek-Cohen E., Colwell R. R. Coincident plasmids and antimicrobial resistance in marine bacteria isolated from polluted and unpolluted Atlantic Ocean samples. Appl Environ Microbiol. 1986 Jun;51(6):1285–1292. doi: 10.1128/aem.51.6.1285-1292.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell J. B., Elliott G. E., Smith D. W. Influence of sewage treatment and urbanization on selection of multiple resistance in fecal coliform populations. Appl Environ Microbiol. 1983 Jul;46(1):227–232. doi: 10.1128/aem.46.1.227-232.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bell R. B. Antibiotic resistance patterns of fecal coliforms isolated from domestic sewage before and after treatment in an aerobic lagoon. Can J Microbiol. 1978 Jul;24(7):886–888. doi: 10.1139/m78-147. [DOI] [PubMed] [Google Scholar]
  7. Cooke M. D. Antibiotic resistance among coliform and fecal coliform bacteria isolated from sewage, seawater, and marine shellfish. Antimicrob Agents Chemother. 1976 Jun;9(6):879–884. doi: 10.1128/aac.9.6.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geldreich E. E., Best L. C., Kenner B. A., Van Donsel D. J. The bacteriological aspects of stormwater pollution. J Water Pollut Control Fed. 1968 Nov;40(11):1861–1872. [PubMed] [Google Scholar]
  9. Jones J. G., Gardener S., Simon B. M., Pickup R. W. Antibiotic resistant bacteria in Windermere and two remote upland tarns in the English Lake District. J Appl Bacteriol. 1986 May;60(5):443–453. doi: 10.1111/j.1365-2672.1986.tb05090.x. [DOI] [PubMed] [Google Scholar]
  10. Kaspar C. W., Burgess J. L., Knight I. T., Colwell R. R. Antibiotic resistance indexing of Escherichia coli to identify sources of fecal contamination in water. Can J Microbiol. 1990 Dec;36(12):891–894. doi: 10.1139/m90-154. [DOI] [PubMed] [Google Scholar]
  11. Krumperman P. H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983 Jul;46(1):165–170. doi: 10.1128/aem.46.1.165-170.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Linton A. H., Timoney J. F., Hinton M. The ecology of chloramphenicol-resistance in Salmonella typhimurium and Escherichia coli in calves with endemic salmonella infection. J Appl Bacteriol. 1981 Feb;50(1):115–129. doi: 10.1111/j.1365-2672.1981.tb00876.x. [DOI] [PubMed] [Google Scholar]
  13. Moriñigo M. A., Cornax R., Castro D., Jimenez-Notaro M., Romero P., Borrego J. J. Antibiotic resistance of Salmonella strains isolated from natural polluted waters. J Appl Bacteriol. 1990 Mar;68(3):297–302. doi: 10.1111/j.1365-2672.1990.tb02578.x. [DOI] [PubMed] [Google Scholar]
  14. Morozzi G., Sportolari R., Caldini G., Cenci G., Morosi A. The effect of anaerobic and aerobic wastewater treatment on faecal coliforms and antibiotic-resistant faecal coliforms. Zentralbl Bakteriol Mikrobiol Hyg B. 1988 Jan;185(4-5):340–349. [PubMed] [Google Scholar]
  15. Niemi M., Sibakov M., Niemela S. Antibiotic resistance among different species of fecal coliforms isolated from water samples. Appl Environ Microbiol. 1983 Jan;45(1):79–83. doi: 10.1128/aem.45.1.79-83.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. O'Morchoe S. B., Ogunseitan O., Sayler G. S., Miller R. V. Conjugal transfer of R68.45 and FP5 between Pseudomonas aeruginosa strains in a freshwater environment. Appl Environ Microbiol. 1988 Aug;54(8):1923–1929. doi: 10.1128/aem.54.8.1923-1929.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Saye D. J., Ogunseitan O., Sayler G. S., Miller R. V. Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Appl Environ Microbiol. 1987 May;53(5):987–995. doi: 10.1128/aem.53.5.987-995.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sokari T. G., Ibiebele D. D., Ottih R. M. Antibiotic resistance among coliforms and Pseudomonas spp. from bodies of water around Port Harcourt, Nigeria. J Appl Bacteriol. 1988 Apr;64(4):355–359. doi: 10.1111/j.1365-2672.1988.tb01880.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES