Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2613–2618. doi: 10.1128/aem.63.7.2613-2618.1997

Physiology and enzymology involved in denitrification by Shewanella putrefaciens.

B Krause 1, K H Nealson 1
PMCID: PMC168558  PMID: 11536813

Abstract

Nitrate reduction to N2O was investigated in batch cultures of Shewanella putrefaciens MR-1, MR-4, and MR-7. All three strains reduced nitrate to nitrite to N2O, and this reduction was coupled to growth, whereas ammonium accumulation was very low (0 to 1 micromol liter-1). All S. putrefaciens isolates were also capable of reducing nitrate aerobically; under anaerobic conditions, nitrite levels were three- to sixfold higher than those found under oxic conditions. Nitrate reductase activities (31 to 60 micromol of nitrite min-1 mg of protein-1) detected in intact cells of S. putrefaciens were equal to or higher than those seen in Escherichia coli LE 392. Km values for nitrate reduction ranged from 12 mM for MR-1 to 1.3 mM for MR-4 with benzyl viologen as an artifical electron donor. Nitrate and nitrite reductase activities in cell-free preparations were demonstrated in native gels by using reduced benzyl viologen. Detergent treatment of crude and membrane extracts suggested that the nitrate reductases of MR-1 and MR-4 are membrane bound. When the nitrate reductase in MR-1 was partially purified, three subunits (90, 70, and 55 kDa) were detected in denaturing gels. The nitrite reductase of MR-1 is also membrane bound and appeared as a 60-kDa band in sodium dodecyl sulfate-polyacrylamide gels after partial purification.

Full Text

The Full Text of this article is available as a PDF (809.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell L. C., Richardson D. J., Ferguson S. J. Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha. The periplasmic enzyme catalyzes the first step in aerobic denitrification. FEBS Lett. 1990 Jun 4;265(1-2):85–87. doi: 10.1016/0014-5793(90)80889-q. [DOI] [PubMed] [Google Scholar]
  2. Betlach M. R., Tiedje J. M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981 Dec;42(6):1074–1084. doi: 10.1128/aem.42.6.1074-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brons H. J., Zehnder A. J. Aerobic nitrate and nitrite reduction in continuous cultures of Escherichia coli E4. Arch Microbiol. 1990;153(6):531–536. doi: 10.1007/BF00245261. [DOI] [PubMed] [Google Scholar]
  4. Carter J. P., Hsaio Y. H., Spiro S., Richardson D. J. Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol. 1995 Aug;61(8):2852–2858. doi: 10.1128/aem.61.8.2852-2858.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carter J. P., Richardson D. J., Spiro S. Isolation and characterisation of a strain of Pseudomonas putida that can express a periplasmic nitrate reductase. Arch Microbiol. 1995 Mar;163(3):159–166. doi: 10.1007/BF00305348. [DOI] [PubMed] [Google Scholar]
  6. Coyne M. S., Arunakumari A., Averill B. A., Tiedje J. M. Immunological identification and distribution of dissimilatory heme cd1 and nonheme copper nitrite reductases in denitrifying bacteria. Appl Environ Microbiol. 1989 Nov;55(11):2924–2931. doi: 10.1128/aem.55.11.2924-2931.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Craske A., Ferguson S. J. The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterisation and kinetic properties. Eur J Biochem. 1986 Jul 15;158(2):429–436. doi: 10.1111/j.1432-1033.1986.tb09771.x. [DOI] [PubMed] [Google Scholar]
  8. Davies K. J., Lloyd D., Boddy L. The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J Gen Microbiol. 1989 Sep;135(9):2445–2451. doi: 10.1099/00221287-135-9-2445. [DOI] [PubMed] [Google Scholar]
  9. DiChristina T. J. Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J Bacteriol. 1992 Mar;174(6):1891–1896. doi: 10.1128/jb.174.6.1891-1896.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hochstein L. I., Tomlinson G. A. The enzymes associated with denitrification. Annu Rev Microbiol. 1988;42:231–261. doi: 10.1146/annurev.mi.42.100188.001311. [DOI] [PubMed] [Google Scholar]
  11. Hofle M. G., Brettar I. Genotyping of heterotrophic bacteria from the central baltic sea by use of low-molecular-weight RNA profiles. Appl Environ Microbiol. 1996 Apr;62(4):1383–1390. doi: 10.1128/aem.62.4.1383-1390.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Iobbi C., Santini C. L., Bonnefoy V., Giordano G. Biochemical and immunological evidence for a second nitrate reductase in Escherichia coli K12. Eur J Biochem. 1987 Oct 15;168(2):451–459. doi: 10.1111/j.1432-1033.1987.tb13438.x. [DOI] [PubMed] [Google Scholar]
  13. Ketchum P. A., Denariaz G., LeGall J., Payne W. J. Menaquinol-nitrate oxidoreductase of Bacillus halodenitrificans. J Bacteriol. 1991 Apr;173(8):2498–2505. doi: 10.1128/jb.173.8.2498-2505.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knowles R. Denitrification. Microbiol Rev. 1982 Mar;46(1):43–70. doi: 10.1128/mr.46.1.43-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krause B., Beveridge T. J., Remsen C. C., Nealson K. H. Structure and properties of novel inclusions in Shewanella putrefaciens. FEMS Microbiol Lett. 1996 May 15;139(1):63–69. doi: 10.1111/j.1574-6968.1996.tb08180.x. [DOI] [PubMed] [Google Scholar]
  16. Lund K., DeMoss J. A. Association-dissociation behavior and subunit structure of heat-released nitrate reductase from Escherichia coli. J Biol Chem. 1976 Apr 25;251(8):2207–2216. [PubMed] [Google Scholar]
  17. MacGregor C. H. Anaerobic cytochrome b1 in Escherichia coli: association with and regulation of nitrate reductase. J Bacteriol. 1975 Mar;121(3):1111–1116. doi: 10.1128/jb.121.3.1111-1116.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mahne I., Tiedje J. M. Criteria and methodology for identifying respiratory denitrifiers. Appl Environ Microbiol. 1995 Mar;61(3):1110–1115. doi: 10.1128/aem.61.3.1110-1115.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Morpeth F. F., Boxer D. H. Kinetic analysis of respiratory nitrate reductase from Escherichia coli K12. Biochemistry. 1985 Jan 1;24(1):40–46. doi: 10.1021/bi00322a007. [DOI] [PubMed] [Google Scholar]
  20. Myers C. R., Nealson K. H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science. 1988 Jun 3;240(4857):1319–1321. doi: 10.1126/science.240.4857.1319. [DOI] [PubMed] [Google Scholar]
  21. Myers C. R., Nealson K. H. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in Shewanella putrefaciens MR-1. J Bacteriol. 1990 Nov;172(11):6232–6238. doi: 10.1128/jb.172.11.6232-6238.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nealson K. H., Myers C. R. Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol. 1992 Feb;58(2):439–443. doi: 10.1128/aem.58.2.439-443.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rönner U., Sörensson F. Denitrification rates in the low-oxygen waters of the stratified baltic proper. Appl Environ Microbiol. 1985 Oct;50(4):801–806. doi: 10.1128/aem.50.4.801-806.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Samuelsson M. O., Cadez P., Gustafsson L. Heat Production by the Denitrifying Bacterium Pseudomonas fluorescens and the Dissimilatory Ammonium-Producing Bacterium Pseudomonas putrefaciens during Anaerobic Growth with Nitrate as the Electron Acceptor. Appl Environ Microbiol. 1988 Sep;54(9):2220–2225. doi: 10.1128/aem.54.9.2220-2225.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Samuelsson M. O. Dissimilatory nitrate reduction to nitrate, nitrous oxide, and ammonium by Pseudomonas putrefaciens. Appl Environ Microbiol. 1985 Oct;50(4):812–815. doi: 10.1128/aem.50.4.812-815.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Samuelsson M. O., Rönner U. Ammonium production by dissimilatory nitrate reducers isolated from baltic sea water, as indicated by N study. Appl Environ Microbiol. 1982 Nov;44(5):1241–1243. doi: 10.1128/aem.44.5.1241-1243.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saraste M., Kuronen T. Interaction of Pseudomonas cytochrome cd1 with the cytoplasmic membrane. Biochim Biophys Acta. 1978 Oct 19;513(1):117–131. doi: 10.1016/0005-2736(78)90117-7. [DOI] [PubMed] [Google Scholar]
  28. Smith G. B., Tiedje J. M. Isolation and characterization of a nitrite reductase gene and its use as a probe for denitrifying bacteria. Appl Environ Microbiol. 1992 Jan;58(1):376–384. doi: 10.1128/aem.58.1.376-384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ye R. W., Fries M. R., Bezborodnikov S. G., Averill B. A., Tiedje J. M. Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl Environ Microbiol. 1993 Jan;59(1):250–254. doi: 10.1128/aem.59.1.250-254.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES