Abstract
Improved approaches to the problem of heterozygote detection for phenylketonuria (PKU) were developed in this study. The discrimination was based on 85 obligate heterozygotes and 45 controls who were neither pregnant nor on birth control medication. The best separation between hetrozygotes and normals was achieved with a linear discriminant function involving the logarithms of the serum concentrations of phenylalanine, tyrosine, and tryptophan. The theoretical overlap area between the distributions of heterozygotes and controls based on the above function, was 3.75%. In the 19 obligate hetrozygotes and 13 controls who were either pregnant or on birth control medication, the best separation was achieved with a linear discriminant function involving the logarithms of the serum concentrations of phenylalanine and tyrosine. The theoretical overlap area was 8.23%. The genetic accuracy of the discriminant function was confirmed by testing the results with parental-child exclusions, segregation analysis, and the frequency of heterozygosity in nonrelated collateral spouses. Finally, there was evidence suggesting that the antihypertensive agent, aldomet, alters serum tyrosine and tryptophan levels.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blau K., Summer G. K., Newsome H. C., Edwards C. H. Phenylalanine loading and aromatic acid excretion in normal subjects and heterozygotes for phenylketonuria. Clin Chim Acta. 1973 May 18;45(3):197–205. doi: 10.1016/0009-8981(73)90427-0. [DOI] [PubMed] [Google Scholar]
- Brown E. S., Waisman H. A., Swanson M. A., Colwell R. E., Banks M. E., Gerritsen T. Effects of oral contraceptives and obesity on carrier tests for phenylketonuria. Clin Chim Acta. 1973 Mar 14;44(2):183–192. doi: 10.1016/0009-8981(73)90380-x. [DOI] [PubMed] [Google Scholar]
- DRISCOLL K. W., HSIA D. Y., KNOX W. E., TROLL W. Detection by phenylalanine tolerance tests of heterozygous carriers of phenylketonuria. Nature. 1956 Dec 1;178(4544):1239–1240. doi: 10.1038/1781239a0. [DOI] [PubMed] [Google Scholar]
- GUTHRIE R., SUSI A. A SIMPLE PHENYLALANINE METHOD FOR DETECTING PHENYLKETONURIA IN LARGE POPULATIONS OF NEWBORN INFANTS. Pediatrics. 1963 Sep;32:338–343. [PubMed] [Google Scholar]
- Gold R. J., Maag U. R., Neal J. L., Scriver C. R. The use of biochemical data in screening for mutant alleles and in genetic counselling. Ann Hum Genet. 1974 Jan;37(3):315–326. doi: 10.1111/j.1469-1809.1974.tb01838.x. [DOI] [PubMed] [Google Scholar]
- Griffin R. F., Elsas L. J. Classic phenylketonuria: diagnosis through heterozygote detection. J Pediatr. 1975 Apr;86(4):512–517. doi: 10.1016/s0022-3476(75)80139-9. [DOI] [PubMed] [Google Scholar]
- Griffin R. F., Humienny M. E., Hall E. C., Elsas L. J. Classic phenylketonuria: heterozygote detection during pregnancy. Am J Hum Genet. 1973 Nov;25(6):646–654. [PMC free article] [PubMed] [Google Scholar]
- HAMILTON P. B. Ion exchange chromatography of amino acids--microdetermination of free amino acids in serum. Ann N Y Acad Sci. 1962 Oct 31;102:55–75. doi: 10.1111/j.1749-6632.1962.tb13625.x. [DOI] [PubMed] [Google Scholar]
- HSIA D. Y. Y. Phenylketonuria: the phenylalanine-tyrosine ratio in the detection of the heterozygous carrier. J Ment Defic Res. 1958 Jun;2(1):8–16. doi: 10.1111/j.1365-2788.1958.tb00380.x. [DOI] [PubMed] [Google Scholar]
- Hunt M. M., Sutherland B. S., Berry H. K. Nutritional management in phenylketonuria. Am J Dis Child. 1971 Jul;122(1):1–6. doi: 10.1001/archpedi.1971.02110010037001. [DOI] [PubMed] [Google Scholar]
- Jackson S. H., Hanley W. B., Gero T., Gosse G. D. Detection of phenylketonuric heterozygotes. Clin Chem. 1971 Jun;17(6):538–543. [PubMed] [Google Scholar]
- KNOX W. E., MESSINGER E. C. The detection in the heterozygote of the metabolic effect of the recessive gene for phenylketonuria. Am J Hum Genet. 1958 Mar;10(1):53–60. [PMC free article] [PubMed] [Google Scholar]
- Kaufman S. The phenylalanine hydroxylating system from mammalian liver. Adv Enzymol Relat Areas Mol Biol. 1971;35:245–319. doi: 10.1002/9780470122808.ch6. [DOI] [PubMed] [Google Scholar]
- Markovitz D. C., Fernstrom J. D. Diet and uptake of aldomet by the brain: competition with natural large neutral amino acids. Science. 1977 Sep 2;197(4307):1014–1015. doi: 10.1126/science.887937. [DOI] [PubMed] [Google Scholar]
- McKean C. M., Boggs D. E., Peterson N. A. The influence of high phenylalanine and tyrosine on the concentrations of essential amino acids in brain. J Neurochem. 1968 Mar;15(3):235–241. doi: 10.1111/j.1471-4159.1968.tb06202.x. [DOI] [PubMed] [Google Scholar]
- Olek K., Oyanagi K., Wardenbach P. Quantitative analysis of phenylalanine metabolites in urine to detect heterozygotes of phenylketonuria. Humangenetik. 1974 Apr 24;22(1):85–88. doi: 10.1007/BF00338140. [DOI] [PubMed] [Google Scholar]
- PENROSE L. S. Measurement of pleiotropic effects in phenylketonuria. Ann Eugen. 1951 Sep;16(2):134–141. doi: 10.1111/j.1469-1809.1951.tb02467.x. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Hansen S. Technical pitfalls leading to errors in the quantitation of plasma amino acids. Clin Chim Acta. 1969 Jul;25(1):53–58. doi: 10.1016/0009-8981(69)90226-5. [DOI] [PubMed] [Google Scholar]
- Perry T. L., Hansen S., Tischler B., Bunting R. Determination of heterozygosity for phenylketonuria on the amino acid analyzer. Clin Chim Acta. 1967 Oct;18(1):51–56. doi: 10.1016/0009-8981(67)90244-6. [DOI] [PubMed] [Google Scholar]
- Rose D. P., Braidman I. P. Excretion of tryptophan metabolites as affected by pregnancy, contraceptive steroids, and steroid hormones. Am J Clin Nutr. 1971 Jun;24(6):673–683. doi: 10.1093/ajcn/24.6.673. [DOI] [PubMed] [Google Scholar]
- Rose D. P., Braidman I. P. Oral contraceptives, depression, and aminoacid metabolism. Lancet. 1970 May 23;1(7656):1117–1118. doi: 10.1016/s0140-6736(70)92789-3. [DOI] [PubMed] [Google Scholar]
- Rose D. P., Cramp D. G. Reduction of plasma tyrosine by oral contraceptives and oestrogens: a possible consequence of tyrosine aminotransferase induction. Clin Chim Acta. 1970 Jul;29(1):49–53. doi: 10.1016/0009-8981(70)90219-6. [DOI] [PubMed] [Google Scholar]
- Rosenblatt D., Scriver C. R. Heterogeneity in genetic control of phenylalanine metabolism in man. Nature. 1968 May 18;218(5142):677–678. doi: 10.1038/218677a0. [DOI] [PubMed] [Google Scholar]
- Westwood A., Raine D. N. Heterozygote detection in phenylketonuria. Measurement of discriminatory ability and interpretation of the phenylalanine loading test by determination of the heterozygote likelihood ratio. J Med Genet. 1975 Dec;12(4):327–333. doi: 10.1136/jmg.12.4.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yakymyshyn L. Y., Reid D. W., Campbell D. J. Problems in the biochemical detection of heterozygotes for phenylketonuria. Clin Biochem. 1972 Mar;5(1):73–81. doi: 10.1016/s0009-9120(72)80010-9. [DOI] [PubMed] [Google Scholar]
- Yarbro M. T., Anderson J. A. L-tryptophan metabolism in phenylketonuria. J Pediatr. 1966 Jun;68(6):895–904. doi: 10.1016/s0022-3476(66)80208-1. [DOI] [PubMed] [Google Scholar]
- Young G. A., Parsons F. M. Impairment of phenylalanine hydroxylation in chronic renal insufficiency. Clin Sci. 1973 Jul;45(1):89–97. doi: 10.1042/cs0450089. [DOI] [PubMed] [Google Scholar]