Abstract
The fate of pollutants in the environment is affected by the presence of easily degradable carbon sources. As a step towards understanding these complex interactions, a model system was explored: the degradation of mixtures of glucose (i.e., an easily degradable substrate) and 3-phenylpropionic acid (3ppa) (a model pollutant) by Escherichia coli ML 30 was studied systematically in carbon-limited continuous culture. The two substrates were always consumed simultaneously regardless of the dilution rate applied. Even at dilution rates higher than the maximum specific growth rate for 3ppa (0.35 +/- 0.05 h-1), the two carbon substrates were utilized together. When cells were grown at a constant dilution rate with different mixtures of 3ppa and glucose, in which 3ppa contributed between 5 and 90% of carbon substrate in the feed medium, the steady-state concentrations of 3ppa and glucose were approximately proportional to the ratio of the two substrates in the feed medium. When cells were cultivated at different dilution rates with a 1:1 mixture (based on carbon) of glucose and 3ppa, an overall maximum specific growth rate of 0.90 +/- 0.05 h-1 and a Monod substrate saturation constant for 3ppa (Ks) of 600 to 700 micrograms liter-1, similar to that measured during growth with 3ppa alone, fitted the experimentally determined steady-state 3ppa concentrations. However, due to the highly differing substrate affinity constants for 3ppa and glucose (Ks approximately 30 to 70 micrograms liter-1), the total steady-state carbon concentration in the culture at a constant dilution rate was determined mainly by the steady-state 3ppa carbon concentration, and it increased with increasing proportions of 3ppa in the feed medium.
Full Text
The Full Text of this article is available as a PDF (269.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Button D. K. Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev. 1985 Sep;49(3):270–297. doi: 10.1128/mr.49.3.270-297.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egli T., Lendenmann U., Snozzi M. Kinetics of microbial growth with mixtures of carbon sources. Antonie Van Leeuwenhoek. 1993;63(3-4):289–298. doi: 10.1007/BF00871224. [DOI] [PubMed] [Google Scholar]
- Gottschal J. C. Growth kinetics and competition--some contemporary comments. Antonie Van Leeuwenhoek. 1993;63(3-4):299–313. doi: 10.1007/BF00871225. [DOI] [PubMed] [Google Scholar]
- HERBERT D., ELSWORTH R., TELLING R. C. The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol. 1956 Jul;14(3):601–622. doi: 10.1099/00221287-14-3-601. [DOI] [PubMed] [Google Scholar]
- Harder W., Dijkhuizen L. Strategies of mixed substrate utilization in microorganisms. Philos Trans R Soc Lond B Biol Sci. 1982 Jun 11;297(1088):459–480. doi: 10.1098/rstb.1982.0055. [DOI] [PubMed] [Google Scholar]
- Kovárová K., Zehnder A. J., Egli T. Temperature-dependent growth kinetics of Escherichia coli ML 30 in glucose-limited continuous culture. J Bacteriol. 1996 Aug;178(15):4530–4539. doi: 10.1128/jb.178.15.4530-4539.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Law A. T., Button D. K. Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. J Bacteriol. 1977 Jan;129(1):115–123. doi: 10.1128/jb.129.1.115-123.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lendenmann U., Egli T. Is Escherichia coli growing in glucose-limited chemostat culture able to utilize other sugars without lag? Microbiology. 1995 Jan;141(Pt 1):71–78. doi: 10.1099/00221287-141-1-71. [DOI] [PubMed] [Google Scholar]
- Lendenmann U., Snozzi M., Egli T. Kinetics of the simultaneous utilization of sugar mixtures by Escherichia coli in continuous culture. Appl Environ Microbiol. 1996 May;62(5):1493–1499. doi: 10.1128/aem.62.5.1493-1499.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Münster U. Concentrations and fluxes of organic carbon substrates in the aquatic environment. Antonie Van Leeuwenhoek. 1993;63(3-4):243–274. doi: 10.1007/BF00871222. [DOI] [PubMed] [Google Scholar]
- Senn H., Lendenmann U., Snozzi M., Hamer G., Egli T. The growth of Escherichia coli in glucose-limited chemostat cultures: a re-examination of the kinetics. Biochim Biophys Acta. 1994 Dec 15;1201(3):424–436. doi: 10.1016/0304-4165(94)90072-8. [DOI] [PubMed] [Google Scholar]
- Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weusthuis R. A., Adams H., Scheffers W. A., van Dijken J. P. Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study. Appl Environ Microbiol. 1993 Sep;59(9):3102–3109. doi: 10.1128/aem.59.9.3102-3109.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]