Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2647–2653. doi: 10.1128/aem.63.7.2647-2653.1997

Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation.

J Borneman 1, E W Triplett 1
PMCID: PMC168563  PMID: 9212415

Abstract

Although the Amazon Basin is well known for its diversity of flora and fauna, this report represents the first description of the microbial diversity in Amazonian soils involving a culture-independent approach. Among the 100 sequences of genes coding for small-subunit rRNA obtained by PCR amplification with universal small-subunit rRNA primers, 98 were bacterial and 2 were archaeal. No duplicate sequences were found, and none of the sequences had been previously described. Eighteen percent of the bacterial sequences could not be classified in any known bacterial kingdom. Two sequences may represent a unique branch between the vast majority of bacteria and the deeply branching, predominantly thermophilic bacteria. Five sequences formed a clade that may represent a novel group within the class Proteobacteria. In addition, rRNA intergenic spacer analysis was used to show significant microbial population differences between a mature forest soil and an adjacent pasture soil.

Full Text

The Full Text of this article is available as a PDF (620.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bakken L. R. Separation and purification of bacteria from soil. Appl Environ Microbiol. 1985 Jun;49(6):1482–1487. doi: 10.1128/aem.49.6.1482-1487.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bassam B. J., Caetano-Anollés G., Gresshoff P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991 Jul;196(1):80–83. doi: 10.1016/0003-2697(91)90120-i. [DOI] [PubMed] [Google Scholar]
  4. Beuscher H. U., Rödel F., Forsberg A., Röllinghoff M. Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect Immun. 1995 Apr;63(4):1270–1277. doi: 10.1128/iai.63.4.1270-1277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bintrim S. B., Donohue T. J., Handelsman J., Roberts G. P., Goodman R. M. Molecular phylogeny of Archaea from soil. Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):277–282. doi: 10.1073/pnas.94.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Borneman J., Skroch P. W., O'Sullivan K. M., Palus J. A., Rumjanek N. G., Jansen J. L., Nienhuis J., Triplett E. W. Molecular microbial diversity of an agricultural soil in Wisconsin. Appl Environ Microbiol. 1996 Jun;62(6):1935–1943. doi: 10.1128/aem.62.6.1935-1943.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DeLong E. F., Wu K. Y., Prézelin B. B., Jovine R. V. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct 20;371(6499):695–697. doi: 10.1038/371695a0. [DOI] [PubMed] [Google Scholar]
  8. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
  9. Gutell R. R., Weiser B., Woese C. R., Noller H. F. Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol. 1985;32:155–216. doi: 10.1016/s0079-6603(08)60348-7. [DOI] [PubMed] [Google Scholar]
  10. Hiraishi A., Kishimoto N., Kosako Y., Wakao N., Tano T. Phylogenetic position of the menaquinone-containing acidophilic chemo-organotroph Acidobacterium capsulatum. FEMS Microbiol Lett. 1995 Oct 1;132(1-2):91–94. doi: 10.1111/j.1574-6968.1995.tb07816.x. [DOI] [PubMed] [Google Scholar]
  11. Jurgens G., Lindström K., Saano A. Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl Environ Microbiol. 1997 Feb;63(2):803–805. doi: 10.1128/aem.63.2.803-805.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Liesack W., Bak F., Kreft J. U., Stackebrandt E. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol. 1994;162(1-2):85–90. doi: 10.1007/BF00264378. [DOI] [PubMed] [Google Scholar]
  13. Maidak B. L., Larsen N., McCaughey M. J., Overbeek R., Olsen G. J., Fogel K., Blandy J., Woese C. R. The Ribosomal Database Project. Nucleic Acids Res. 1994 Sep;22(17):3485–3487. doi: 10.1093/nar/22.17.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci. 1994 Feb;10(1):41–48. doi: 10.1093/bioinformatics/10.1.41. [DOI] [PubMed] [Google Scholar]
  15. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  16. Schleper C., Holben W., Klenk H. P. Recovery of crenarchaeotal ribosomal DNA sequences from freshwater-lake sediments. Appl Environ Microbiol. 1997 Jan;63(1):321–323. doi: 10.1128/aem.63.1.321-323.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stephens R. S. Challenge of Chlamydia research. Infect Agents Dis. 1992 Dec;1(6):279–293. [PubMed] [Google Scholar]
  18. Torsvik V., Goksøyr J., Daae F. L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990 Mar;56(3):782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tsuji T., Kawasaki Y., Takeshima S., Sekiya T., Tanaka S. A new fluorescence staining assay for visualizing living microorganisms in soil. Appl Environ Microbiol. 1995 Sep;61(9):3415–3421. doi: 10.1128/aem.61.9.3415-3421.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Van de Peer Y., Van den Broeck I., De Rijk P., De Wachter R. Database on the structure of small ribosomal subunit RNA. Nucleic Acids Res. 1994 Sep;22(17):3488–3494. doi: 10.1093/nar/22.17.3488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ward D. M., Weller R., Bateson M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature. 1990 May 3;345(6270):63–65. doi: 10.1038/345063a0. [DOI] [PubMed] [Google Scholar]
  22. Winker S., Woese C. R. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol. 1991;14(4):305–310. doi: 10.1016/S0723-2020(11)80303-6. [DOI] [PubMed] [Google Scholar]
  23. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES