Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2695–2701. doi: 10.1128/aem.63.7.2695-2701.1997

Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant.

L Stols 1, M I Donnelly 1
PMCID: PMC168564  PMID: 9212416

Abstract

NAD(+)-dependent malic enzyme was cloned from the Escherichia coli genome by PCR based on the published partial sequence of the gene. The enzyme was overexpressed and purified to near homogeneity in two chromatographic steps and was analyzed kinetically in the forward and reverse directions. The Km values determined in the presence of saturating cofactor and manganese ion were 0.26 mM for malate (physiological direction) and 16 mM for pyruvate (reverse direction). When malic enzyme was induced under appropriate culture conditions in a strain of E. coli that was unable to ferment glucose and accumulated pyruvate, fermentative metabolism of glucose was restored. Succinic acid was the major fermentation product formed. When this fermentation was performed in the presence of hydrogen, the yield of succinic acid increased. The constructed pathway represents an alternative metabolic route for the fermentative production of dicarboxylic acids from renewable feedstocks.

Full Text

The Full Text of this article is available as a PDF (195.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashworth J. M., Kornberg H. L. The anaplerotic fixation of carbon dioxide by Escherichia coli. Proc R Soc Lond B Biol Sci. 1966 Aug 16;165(999):179–188. doi: 10.1098/rspb.1966.0063. [DOI] [PubMed] [Google Scholar]
  2. Balch W. E., Wolfe R. S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. Appl Environ Microbiol. 1976 Dec;32(6):781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boernke W. E., Millard C. S., Stevens P. W., Kakar S. N., Stevens F. J., Donnelly M. I. Stringency of substrate specificity of Escherichia coli malate dehydrogenase. Arch Biochem Biophys. 1995 Sep 10;322(1):43–52. doi: 10.1006/abbi.1995.1434. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Bunch P. K., Mat-Jan F., Lee N., Clark D. P. The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology. 1997 Jan;143(Pt 1):187–195. doi: 10.1099/00221287-143-1-187. [DOI] [PubMed] [Google Scholar]
  6. Cameron D. C., Tong I. T. Cellular and metabolic engineering. An overview. Appl Biochem Biotechnol. 1993 Jan-Feb;38(1-2):105–140. doi: 10.1007/BF02916416. [DOI] [PubMed] [Google Scholar]
  7. Clark D. P. The fermentation pathways of Escherichia coli. FEMS Microbiol Rev. 1989 Sep;5(3):223–234. doi: 10.1016/0168-6445(89)90033-8. [DOI] [PubMed] [Google Scholar]
  8. Kulkarni G., Cook P. F., Harris B. G. Cloning and nucleotide sequence of a full-length cDNA encoding Ascaris suum malic enzyme. Arch Biochem Biophys. 1993 Jan;300(1):231–237. doi: 10.1006/abbi.1993.1032. [DOI] [PubMed] [Google Scholar]
  9. Mahajan S. K., Chu C. C., Willis D. K., Templin A., Clark A. J. Physical analysis of spontaneous and mutagen-induced mutants of Escherichia coli K-12 expressing DNA exonuclease VIII activity. Genetics. 1990 Jun;125(2):261–273. doi: 10.1093/genetics/125.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mallick S., Harris B. G., Cook P. F. Kinetic mechanism of NAD:malic enzyme from Ascaris suum in the direction of reductive carboxylation. J Biol Chem. 1991 Feb 15;266(5):2732–2738. [PubMed] [Google Scholar]
  11. Mat-Jan F., Alam K. Y., Clark D. P. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase. J Bacteriol. 1989 Jan;171(1):342–348. doi: 10.1128/jb.171.1.342-348.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Millard C. S., Chao Y. P., Liao J. C., Donnelly M. I. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Appl Environ Microbiol. 1996 May;62(5):1808–1810. doi: 10.1128/aem.62.5.1808-1810.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Milne J. A., Cook R. A. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation. Biochemistry. 1979 Aug 7;18(16):3604–3610. doi: 10.1021/bi00583a026. [DOI] [PubMed] [Google Scholar]
  14. Murai T., Tokushige M., Nagai J., Katsuki H. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli. Biochem Biophys Res Commun. 1971 May 21;43(4):875–881. doi: 10.1016/0006-291x(71)90698-x. [DOI] [PubMed] [Google Scholar]
  15. Podkovyrov S. M., Zeikus J. G. Purification and characterization of phosphoenolpyruvate carboxykinase,a catabolic CO2-fixing enzyme, from Anaerobiospirillum succiniciproducens. J Gen Microbiol. 1993 Feb;139(2):223–228. doi: 10.1099/00221287-139-2-223. [DOI] [PubMed] [Google Scholar]
  16. Samuelov N. S., Lamed R., Lowe S., Zeikus J. G. Influence of CO(2)-HCO(3) Levels and pH on Growth, Succinate Production, and Enzyme Activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol. 1991 Oct;57(10):3013–3019. doi: 10.1128/aem.57.10.3013-3019.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Stols L., Kulkarni G., Harris B. G., Donnelly M. I. Expression of Ascaris suum malic enzyme in a mutant Escherichia coli allows production of succinic acid from glucose. Appl Biochem Biotechnol. 1997 Spring;63-65:153–158. doi: 10.1007/BF02920421. [DOI] [PubMed] [Google Scholar]
  18. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yamaguchi M., Tokushige M., Katsuki H. Studies on regulatory functions of malic enzymes. II. Purification and molecular properties of nicotinamide adenine dinucleotide-linked malic enzyme from Eschericha coli. J Biochem. 1973 Jan;73(1):169–180. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES