Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2741–2746. doi: 10.1128/aem.63.7.2741-2746.1997

Identification of a novel cytochrome P-450 gene from the white rot fungus Phanerochaete chrysosporium.

S W Kullman 1, F Matsumura 1
PMCID: PMC168569  PMID: 9212420

Abstract

A gene fragment belonging to the cytochrome P-450 superfamily has been cloned and identified from stationary cultures of the filamentous fungus Phanerochaete chrysosporium by reverse transcriptase (RT)-PCR. A set of degenerate primers homologous to highly conserved regions of known cytochrome P-450 sequences were used for initial RT-PCRs. Individual PCR products were cloned, sequenced, and identified as those belonging to the cytochrome P-450 superfamily based on amino acid sequence homologies and the presence of the highly conserved heme binding region. The nucleotide sequence of a single cDNA clone indicated the presence of an open reading frame encoding a partial cytochrome P-450 protein of 208 amino acids. Comparisons of the deduced amino acid sequence of the partial protein to other known cytochrome P-450 sequences indicate that it is the first member of a new family of cytochrome P-450s, designated CYP63-1A. Northern blot analysis suggests that CYP63-1A is expressed under both nitrogen-rich and nitrogen-deficient culture conditions and thus not under the same regulatory constraints as the well-studied lignin and manganese peroxidases. Western blot analyses using antibodies raised to the heme binding region of CYP63-1A indicate that the protein has a molecular mass of approximately 44,000 Da.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniw J. A new method for designing PCR primers specific for groups of sequences and its application to plant viruses. Mol Biotechnol. 1995 Oct;4(2):111–119. doi: 10.1007/BF02921605. [DOI] [PubMed] [Google Scholar]
  2. Birch P. R., Sims P. F., Broda P. Substrate-dependent differential splicing of introns in the regions encoding the cellulose binding domains of two exocellobiohydrolase I-like genes in Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Oct;61(10):3741–3744. doi: 10.1128/aem.61.10.3741-3744.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Broda P., Birch P. R., Brooks P. R., Sims P. F. PCR-mediated analysis of lignocellulolytic gene transcription by Phanerochaete chrysosporium: substrate-dependent differential expression within gene families. Appl Environ Microbiol. 1995 Jun;61(6):2358–2364. doi: 10.1128/aem.61.6.2358-2364.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Gonzalez F. J. The molecular biology of cytochrome P450s. Pharmacol Rev. 1988 Dec;40(4):243–288. [PubMed] [Google Scholar]
  6. Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
  7. Higson F. K. Degradation of xenobiotics by white rot fungi. Rev Environ Contam Toxicol. 1991;122:111–152. doi: 10.1007/978-1-4612-3198-1_4. [DOI] [PubMed] [Google Scholar]
  8. Joshi D. K., Gold M. H. Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Jun;59(6):1779–1785. doi: 10.1128/aem.59.6.1779-1785.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapoor M., Lin W. S. Studies on the induction of aryl hydrocarbon(benzo[a]pyrene) hydroxylase in Neurospora crassa, and its suppression by sodium selenite. Xenobiotica. 1984 Dec;14(12):903–915. doi: 10.3109/00498258409151489. [DOI] [PubMed] [Google Scholar]
  10. Kullman S. W., Matsumura F. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol. 1996 Feb;62(2):593–600. doi: 10.1128/aem.62.2.593-600.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maloney A. P., VanEtten H. D. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol Gen Genet. 1994 Jun 3;243(5):506–514. doi: 10.1007/BF00284198. [DOI] [PubMed] [Google Scholar]
  12. Masaphy S., Levanon D., Henis Y., Venkateswarlu K., Kelly S. L. Evidence for cytochrome P-450 and P-450-mediated benzo(a)pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett. 1996 Jan 1;135(1):51–55. doi: 10.1111/j.1574-6968.1996.tb07965.x. [DOI] [PubMed] [Google Scholar]
  13. Meijer A. H., Souer E., Verpoorte R., Hoge J. H. Isolation of cytochrome P-450 cDNA clones from the higher plant Catharanthus roseus by a PCR strategy. Plant Mol Biol. 1993 May;22(2):379–383. doi: 10.1007/BF00014944. [DOI] [PubMed] [Google Scholar]
  14. Nebert D. W., Gonzalez F. J. P450 genes: structure, evolution, and regulation. Annu Rev Biochem. 1987;56:945–993. doi: 10.1146/annurev.bi.56.070187.004501. [DOI] [PubMed] [Google Scholar]
  15. Nebert D. W., Nelson D. R., Coon M. J., Estabrook R. W., Feyereisen R., Fujii-Kuriyama Y., Gonzalez F. J., Guengerich F. P., Gunsalus I. C., Johnson E. F. The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991 Jan-Feb;10(1):1–14. doi: 10.1089/dna.1991.10.1. [DOI] [PubMed] [Google Scholar]
  16. Nelson D. R., Strobel H. W. Evolution of cytochrome P-450 proteins. Mol Biol Evol. 1987 Nov;4(6):572–593. doi: 10.1093/oxfordjournals.molbev.a040471. [DOI] [PubMed] [Google Scholar]
  17. Sariaslani F. S. Microbial cytochromes P-450 and xenobiotic metabolism. Adv Appl Microbiol. 1991;36:133–178. doi: 10.1016/s0065-2164(08)70453-2. [DOI] [PubMed] [Google Scholar]
  18. Shen Z., Wells R. L., Liu J., Elkind M. M. Identification of a cytochrome P450 gene by reverse transcription--PCR using degenerate primers containing inosine. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11483–11487. doi: 10.1073/pnas.90.24.11483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Udvardi M. K., Metzger J. D., Krishnapillai V., Peacock W. J., Dennis E. S. Cloning and sequencing of a full-length cDNA from Thlaspi arvense L. that encodes a cytochrome P-450. Plant Physiol. 1994 Jun;105(2):755–756. doi: 10.1104/pp.105.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Nistelrooy J. G., van den Brink J. M., van Kan J. A., van Gorcom R. F., de Waard M. A. Isolation and molecular characterisation of the gene encoding eburicol 14 alpha-demethylase (cYP51) from Penicillium italicum. Mol Gen Genet. 1996 Apr 10;250(6):725–733. doi: 10.1007/BF02172984. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES