Abstract
This paper concerns an analysis of family resemblance for magnesium concentrations, based on data from nuclear families and twins. Neither red blood cell magnesium nor plasma magnesium varies with age in children (under 20 years of age). Whereas adult plasma magnesium varies linearly with age, the red cell magnesium clearly showed a nonlinear trend: quadratic for males and a fifth-degree polynomial for females. Transformed magnesium concentrations generated six correlations in nuclear families and twins for each of the two traits. Separate univariate analyses, using a simple linear model with four parameters, strongly suggested that genetic factors are primarily responsible for the observed family resemblance. Both traits were then analyzed simultaneously using a simple bivariate model. We found that one common genetic factor alone could not explain all the 24 correlations generated for the bivariate analysis. The most parsimonious model involved only three parameters: genetic heritability for red blood cell magnesium (.922 +/- .014), genetic heritability for plasma magnesium (.721 +/- .040), and the genetic correlation between the two traits (.233 +/- .040).
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Benech A., Pineau M., Henrotte J. G. Variations de la magnesemie chez la femme en fonction de l'age. Note preliminaire. Rev Soc Biom Hum. 1974;9(1-2):17–21. [PubMed] [Google Scholar]
- Darlu P., Michotte Y., Defrise-Gussenhoven E., Henrotte J. G. The inheritance of plasma and red blood cell magnesium and zinc levels studied from twin and family data. Acta Genet Med Gemellol (Roma) 1981;30(1):67–75. doi: 10.1017/s0001566000006632. [DOI] [PubMed] [Google Scholar]
- Darlu P., Moreau T. Twin studies of blood ionic content. Prog Clin Biol Res. 1978;24(Pt 100):177–185. [PubMed] [Google Scholar]
- Dunn M. J., Walser M. Magnesium depletion in normal man. Metabolism. 1966 Oct;15(10):884–895. doi: 10.1016/0026-0495(66)90159-4. [DOI] [PubMed] [Google Scholar]
- GINSBURG S., SMITH J. G., GINSBURG F. M., REARDON J. Z., AIKAWA J. K. Magnesium metabolism of human and rabbit erythrocytes. Blood. 1962 Dec;20:722–729. [PubMed] [Google Scholar]
- Henrotte J. G., Constans H., Constans J., Bisseliches F., Coudert J. Le magnésium érythrocytaire et plasmatique des populations amerindiennes du Corridor Interandin. Arch Int Physiol Biochim. 1972 Dec;80(5):941–944. doi: 10.3109/13813457209070444. [DOI] [PubMed] [Google Scholar]
- Hilmy M. I., Somjen G. G. Distribution and tissue uptake of magnesium related to its pharmacological effects. Am J Physiol. 1968 Feb;214(2):406–413. doi: 10.1152/ajplegacy.1968.214.2.406. [DOI] [PubMed] [Google Scholar]
- LEIF R. C., VINOGRAD J. THE DISTRIBUTION OF BUOYANT DENSITY OF HUMAN ERYTHROCYTES IN BOVINE ALBUMIN SOLUTIONS. Proc Natl Acad Sci U S A. 1964 Mar;51:520–528. doi: 10.1073/pnas.51.3.520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maclean C. J., Morton N. E., Elston R. C., Yee S. Skewness in commingled distributions. Biometrics. 1976 Sep;32(3):695–699. [PubMed] [Google Scholar]
- Park M. H., Wong B. B., Lusk J. E. Mutants in three genes affecting transport of magnesium in Escherichia coli: genetics and physiology. J Bacteriol. 1976 Jun;126(3):1096–1103. doi: 10.1128/jb.126.3.1096-1103.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paschen K., Henning H. V., Quellhorst E., Scheler F. Veränderungen der Calcium- und Magnesiumkonzentrationen im Plasma und in Erythrocyten während der Hämodialyse. Klin Wochenschr. 1971 Dec 15;49(24):1314–1318. doi: 10.1007/BF01495517. [DOI] [PubMed] [Google Scholar]
- Paunier L. Magnesium malabsorption. Ergeb Inn Med Kinderheilkd. 1979;42:113–131. doi: 10.1007/978-3-642-67239-2_2. [DOI] [PubMed] [Google Scholar]
- Paunier L., Radde I. C., Kooh S. W., Conen P. E., Fraser D. Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics. 1968 Feb;41(2):385–402. [PubMed] [Google Scholar]
- Rao D. C., Laskarzewski P. M., Morrison J. A., Khoury P., Kelly K., Wette R., Russell J., Glueck C. J. The Cincinnati Lipid Research Clinic family study: cultural and biological determinants of lipids and lipoprotein concentrations. Am J Hum Genet. 1982 Nov;34(6):888–903. [PMC free article] [PubMed] [Google Scholar]
- Rao D. C., Morton N. E., Cloninger C. R. Path analysis under generalized assortative mating. I. Theory. Genet Res. 1979 Apr;33(2):175–188. doi: 10.1017/s0016672300018310. [DOI] [PubMed] [Google Scholar]
- Salet J., Polonovki C., Fournet J. P., de Gouyon F., Aymard P., Pean G., Taillemite J. L. Démonstration de la natRE FAMILIALE DE L'hypomagnésémie congénitale chronique. Arch Fr Pediatr. 1970 May;27(5):550–551. [PubMed] [Google Scholar]
- Spencer R. W., Voyce M. A. Familial hypokalaemia and hypomagnesaemia. A further family. Acta Paediatr Scand. 1976 Jul;65(4):505–507. doi: 10.1111/j.1651-2227.1976.tb04921.x. [DOI] [PubMed] [Google Scholar]
- VALBERG L. S., HOLT J. M., PAULSON E., SZIVEK J. SPECTROCHEMICAL ANALYSIS OF SODIUM, POTASSIUM, CALCIUM, MAGNESIUM, COPPER, AND ZINC IN NORMAL HUMAN ERYTHROCYTES. J Clin Invest. 1965 Mar;44:379–389. doi: 10.1172/JCI105151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WALLACH S., CAHILL L. N., ROGAN F. H., JONES H. L. Plasma and erythrocyte magnesium in health and disease. J Lab Clin Med. 1962 Feb;59:195–210. [PubMed] [Google Scholar]
- Walser M. Magnesium metabolism. Ergeb Physiol. 1967;59:185–296. doi: 10.1007/BF02269144. [DOI] [PubMed] [Google Scholar]
- Watson W. S., Hilditch T. E., Horton P. W., Davies D. L., Lindsay R. Magnesium metabolism in blood and the whole body in man using 28magnesium. Metabolism. 1979 Jan;28(1):90–95. doi: 10.1016/0026-0495(79)90174-4. [DOI] [PubMed] [Google Scholar]
- Watson W. S., Lyon T. D., Hilditch T. E. Red cell magnesium as a function of cell age. Metabolism. 1980 May;29(5):397–399. doi: 10.1016/0026-0495(80)90162-6. [DOI] [PubMed] [Google Scholar]
