Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2765–2770. doi: 10.1128/aem.63.7.2765-2770.1997

Benzoate degradation via the ortho pathway in Alcaligenes eutrophus is perturbed by succinate.

F Ampe 1, J L Uribelarrea 1, G M Aragao 1, N D Lindley 1
PMCID: PMC168572  PMID: 9212423

Abstract

During batch growth of Alcaligenes eutrophus on benzoate-plus-succinate mixtures, substrates were simultaneously metabolized, leading to a higher specific growth rate (mu = 0.56 h-1) than when a single substrate was used (mu = 0.51 h-1 for benzoate alone and 0.44 h-1 for succinate alone), without adversely affecting the growth yield (0.57 Cmol/Cmol). Flux distribution analysis revealed that succinate dehydrogenase most probably controls the rate of total succinate consumption (the maximum flux being 9.7 mmol.g-1.h-1). It is postulated that the relative consumption rate of each substrate is in part related to modified levels of gene expression but to a large extent is dependent upon the presence of succinate, end product of the beta-ketoadipate pathway. Indeed, the in vitro beta-ketoadipate-succinyl coenzyme A transferase activity was seen to be inhibited by succinate, a coproduct of the reaction.

Full Text

The Full Text of this article is available as a PDF (217.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ampe F., Lindley N. D. Acetate utilization is inhibited by benzoate in Alcaligenes eutrophus: evidence for transcriptional control of the expression of acoE coding for acetyl coenzyme A synthetase. J Bacteriol. 1995 Oct;177(20):5826–5833. doi: 10.1128/jb.177.20.5826-5833.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ampe F., Lindley N. D. Flux limitations in the ortho pathway of benzoate degradation of Alcaligenes eutrophus: metabolite overflow and induction of the meta pathway at high substrate concentrations. Microbiology. 1996 Jul;142(Pt 7):1807–1817. doi: 10.1099/13500872-142-7-1807. [DOI] [PubMed] [Google Scholar]
  3. Botsford J. L., Harman J. G. Cyclic AMP in prokaryotes. Microbiol Rev. 1992 Mar;56(1):100–122. doi: 10.1128/mr.56.1.100-122.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang J. Y., Knecht R., Braun D. G. Amino acid analysis at the picomole level. Application to the C-terminal sequence analysis of polypeptides. Biochem J. 1981 Dec 1;199(3):547–555. doi: 10.1042/bj1990547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaudhry G. R., Chapalamadugu S. Biodegradation of halogenated organic compounds. Microbiol Rev. 1991 Mar;55(1):59–79. doi: 10.1128/mr.55.1.59-79.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cocaign-Bousquet M., Guyonvarch A., Lindley N. D. Growth Rate-Dependent Modulation of Carbon Flux through Central Metabolism and the Kinetic Consequences for Glucose-Limited Chemostat Cultures of Corynebacterium glutamicum. Appl Environ Microbiol. 1996 Feb;62(2):429–436. doi: 10.1128/aem.62.2.429-436.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cánovas J. L., Stanier R. Y. Regulation of the enzymes of the beta-ketoadipate pathway in Moraxella calcoacetica. 1. General aspects. Eur J Biochem. 1967 May;1(3):289–300. doi: 10.1007/978-3-662-25813-2_40. [DOI] [PubMed] [Google Scholar]
  8. Daugherty D. D., Karel S. F. Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1(pRO101) in a dual-substrate chemostat. Appl Environ Microbiol. 1994 Sep;60(9):3261–3267. doi: 10.1128/aem.60.9.3261-3267.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Don R. H., Weightman A. J., Knackmuss H. J., Timmis K. N. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4). J Bacteriol. 1985 Jan;161(1):85–90. doi: 10.1128/jb.161.1.85-90.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Drewry D. T., Lomax J. A., Gray G. W., Wilkinson S. G. Studies of lipid A fractions from the lipopolysaccharides of Pseudomonas aeruginosa and Pseudomonas alcaligenes. Biochem J. 1973 Jul;133(3):563–572. doi: 10.1042/bj1330563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Duetz W. A., Marqués S., de Jong C., Ramos J. L., van Andel J. G. Inducibility of the TOL catabolic pathway in Pseudomonas putida (pWW0) growing on succinate in continuous culture: evidence of carbon catabolite repression control. J Bacteriol. 1994 Apr;176(8):2354–2361. doi: 10.1128/jb.176.8.2354-2361.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duetz W. A., van Andel J. G. Stability of TOL plasmid pWW0 in Pseudomonas putida mt-2 under non-selective conditions in continuous culture. J Gen Microbiol. 1991 Jun;137(6):1369–1374. doi: 10.1099/00221287-137-6-1369. [DOI] [PubMed] [Google Scholar]
  13. Farr D. R., Cain R. B. Catechol oxygenase induction in Pseudomonas aeruginosa. Biochem J. 1968 Feb;106(4):879–885. doi: 10.1042/bj1060879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holtel A., Marqués S., Möhler I., Jakubzik U., Timmis K. N. Carbon source-dependent inhibition of xyl operon expression of the Pseudomonas putida TOL plasmid. J Bacteriol. 1994 Mar;176(6):1773–1776. doi: 10.1128/jb.176.6.1773-1776.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson B. F., Stanier R. Y. Dissimilation of aromatic compounds by Alcaligenes eutrophus. J Bacteriol. 1971 Aug;107(2):468–475. doi: 10.1128/jb.107.2.468-475.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson B. F., Stanier R. Y. Regulation of the -ketoadipate pathway in Alcaligenes eutrophus. J Bacteriol. 1971 Aug;107(2):476–485. doi: 10.1128/jb.107.2.476-485.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lomax J. A., Gray G. W., Wilkinson S. G. Studies of the polysaccharide fraction from the lipopolysaccharide of Pseudomonas alcaligenes. Biochem J. 1974 Jun;139(3):633–643. doi: 10.1042/bj1390633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MacGregor C. H., Wolff J. A., Arora S. K., Phibbs P. V., Jr Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. J Bacteriol. 1991 Nov;173(22):7204–7212. doi: 10.1128/jb.173.22.7204-7212.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Martin J. P., Fleck J., Mock M., Ghuysen J. M. The wall peptidoglycans of Neisseria perflava, Moraxella glucidolytica, Pseudomonas alcaligenes and Proteus vulgaris strain P18. Eur J Biochem. 1973 Oct 5;38(2):301–306. doi: 10.1111/j.1432-1033.1973.tb03062.x. [DOI] [PubMed] [Google Scholar]
  21. Meagher R. B., Ngai K. L., Ornston L. N. Muconate cycloisomerase. Methods Enzymol. 1990;188:126–130. doi: 10.1016/0076-6879(90)88023-4. [DOI] [PubMed] [Google Scholar]
  22. Ngai K. L., Neidle E. L., Ornston L. N. Catechol and chlorocatechol 1,2-dioxygenases. Methods Enzymol. 1990;188:122–126. doi: 10.1016/0076-6879(90)88022-3. [DOI] [PubMed] [Google Scholar]
  23. Ornston L. N. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation. J Biol Chem. 1966 Aug 25;241(16):3800–3810. [PubMed] [Google Scholar]
  24. Parales R. E., Harwood C. S. Regulation of the pcaIJ genes for aromatic acid degradation in Pseudomonas putida. J Bacteriol. 1993 Sep;175(18):5829–5838. doi: 10.1128/jb.175.18.5829-5838.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Phillips A. T., Mulfinger L. M. Cyclic adenosine 3',5'-monophosphate levels in Pseudomonas putida and Pseudomonas aeruginosa during induction and carbon catabolite repression of histidase synthesis. J Bacteriol. 1981 Mar;145(3):1286–1292. doi: 10.1128/jb.145.3.1286-1292.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Reiner A. M., Hegeman G. D. Metabolism of benzoic acid by bacteria. Accumulation of (-)-3,5-cyclohexadiene-1,2-diol-1-carboxylic acid by mutant strain of Alcaligenes eutrophus. Biochemistry. 1971 Jun 22;10(13):2530–2536. doi: 10.1021/bi00789a017. [DOI] [PubMed] [Google Scholar]
  27. Reiner A. M. Metabolism of benzoic acid by bacteria: 3,5-cyclohexadiene-1,2-diol-1-carboxylic acid is an intermediate in the formation of catechol. J Bacteriol. 1971 Oct;108(1):89–94. doi: 10.1128/jb.108.1.89-94.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Saier M. H., Jr, Chauvaux S., Cook G. M., Deutscher J., Paulsen I. T., Reizer J., Ye J. J. Catabolite repression and inducer control in Gram-positive bacteria. Microbiology. 1996 Feb;142(Pt 2):217–230. doi: 10.1099/13500872-142-2-217. [DOI] [PubMed] [Google Scholar]
  29. Schobert P., Bowien B. Unusual C3 and C4 metabolism in the chemoautotroph Alcaligenes eutrophus. J Bacteriol. 1984 Jul;159(1):167–172. doi: 10.1128/jb.159.1.167-172.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Springael D., Kreps S., Mergeay M. Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol. 1993 Mar;175(6):1674–1681. doi: 10.1128/jb.175.6.1674-1681.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stanier R. Y., Ornston L. N. The beta-ketoadipate pathway. Adv Microb Physiol. 1973;9(0):89–151. [PubMed] [Google Scholar]
  32. Zylstra G. J., Olsen R. H., Ballou D. P. Cloning, expression, and regulation of the Pseudomonas cepacia protocatechuate 3,4-dioxygenase genes. J Bacteriol. 1989 Nov;171(11):5907–5914. doi: 10.1128/jb.171.11.5907-5914.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES