Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2779–2784. doi: 10.1128/aem.63.7.2779-2784.1997

Glucose metabolism in the yeast Schwanniomyces castellii: role of phosphorylation site I and an alternative respiratory pathway.

E Zimmer 1, S Blanchard 1, H Boze 1, G Moulin 1, P Galzy 1
PMCID: PMC168574  PMID: 9212425

Abstract

Glucose metabolism in a Crabtree-negative yeast, Schwanniomyces castellii, and a cytochrome b-deficient mutant of this strain was investigated in chemostat culture. The wild-type and mutant strains exhibited the same behavior. Oxidative metabolism was observed when the substrate uptake rate (qS) was low. Fermentative metabolites were excreted when the qS value was higher than 0.40 g.g-1.h-1, indicating the occurrence of a respirofermentative metabolism; however, the respiratory quotient (RQ) remained near 1. When fermentation occurred, the cytochrome pathway was repressed but not the salicylhydroxamic acid (SHAM)-sensitive pathway. The presence of an alternative SHAM-sensitive respiratory pathway and the presence of phosphorylation site I in all metabolic conditions explained the RQ value of 1 and accounted for high biomass yields in oxidative metabolism conditions (0.62 g.g-1 for the wild-type strain and 0.31 g.g-1 for the cytochrome b-deficient mutant strain).

Full Text

The Full Text of this article is available as a PDF (205.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARRIGONI O., SINGER T. P. Limitations of the phenazine methosulphate assay for succinic and related dehydrogenases. Nature. 1962 Mar 31;193:1256–1258. doi: 10.1038/1931256a0. [DOI] [PubMed] [Google Scholar]
  2. Beattie D. S., Japa S., Howton M., Zhu Q. S. Direct interaction between the internal NADH: ubiquinone oxidoreductase and ubiquinol:cytochrome c oxidoreductase in the reduction of exogenous quinones by yeast mitochondria. Arch Biochem Biophys. 1992 Feb 1;292(2):499–505. doi: 10.1016/0003-9861(92)90022-o. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Bruinenberg P. M., van Dijken J. P., Scheffers W. A. An enzymic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol. 1983 Apr;129(4):965–971. doi: 10.1099/00221287-129-4-965. [DOI] [PubMed] [Google Scholar]
  5. Claisse M. L., Pajot P. F. Presence of cytochrome c1 in cytoplasmic "petite" mutants of Saccharomyces cerevisiae. Eur J Biochem. 1974 Nov 1;49(1):49–59. doi: 10.1111/j.1432-1033.1974.tb03810.x. [DOI] [PubMed] [Google Scholar]
  6. Day D. A., Wiskich J. T. Isolation and properties of the outer membrane of plant mitochondria. Arch Biochem Biophys. 1975 Nov;171(1):117–123. doi: 10.1016/0003-9861(75)90014-4. [DOI] [PubMed] [Google Scholar]
  7. De Deken R. H. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966 Aug;44(2):149–156. doi: 10.1099/00221287-44-2-149. [DOI] [PubMed] [Google Scholar]
  8. Downie J. A., Garland P. B. An antimycin A- and cyanide-resistant variant of Candida utilis arising during copper-limited growth. Biochem J. 1973 Aug;134(4):1051–1061. doi: 10.1042/bj1341051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dubreucq E., Boze H., Fouilhé M., Moulin G., Galzy P. Alternative respiration pathways in Schwanniomyces castellii. I. Isolation and characterization of cytochrome-deficient mutants. Antonie Van Leeuwenhoek. 1990 Apr;57(3):123–130. doi: 10.1007/BF00403946. [DOI] [PubMed] [Google Scholar]
  10. Dubreucq E., Boze H., Moulin G., Galzy P. Alternative respiration pathways in Schwanniomyces castellii. II. Characteristics of oxidation pathways. Antonie Van Leeuwenhoek. 1990 Apr;57(3):131–137. doi: 10.1007/BF00403947. [DOI] [PubMed] [Google Scholar]
  11. Käppeli O. Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol. 1986;28:181–209. doi: 10.1016/s0065-2911(08)60239-8. [DOI] [PubMed] [Google Scholar]
  12. Ohnishi T. Factors controlling the occurrence of site I phosphorylation in C. utilis mitochondria. FEBS Lett. 1972 Aug 15;24(3):305–309. doi: 10.1016/0014-5793(72)80378-8. [DOI] [PubMed] [Google Scholar]
  13. Ohnishi T., Sottocasa G., Ernster L. Current approaches to the mechanism of energy-coupling in the respiratory chain. Studies with yeast mitochondria. Bull Soc Chim Biol (Paris) 1966;48(11):1189–1203. [PubMed] [Google Scholar]
  14. Poinsot C., Moulin G., Claisse M., Galzy P. Isolation and characterization of a mutant of Schwanniomyces castellii with altered respiration. Antonie Van Leeuwenhoek. 1987;53(2):65–75. doi: 10.1007/BF00419502. [DOI] [PubMed] [Google Scholar]
  15. Polakis E. S., Bartley W. Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J. 1965 Oct;97(1):284–297. doi: 10.1042/bj0970284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. STICKLAND L. H. The determination of small quantities of bacteria by means of the biuret reaction. J Gen Microbiol. 1951 Oct;5(4):698–703. doi: 10.1099/00221287-5-4-698. [DOI] [PubMed] [Google Scholar]
  17. Van Urk H., Mak P. R., Scheffers W. A., van Dijken J. P. Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast. 1988 Dec;4(4):283–291. doi: 10.1002/yea.320040406. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES