Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2792–2797. doi: 10.1128/aem.63.7.2792-2797.1997

Unique regulation of crystal protein production in Bacillus thuringiensis subsp. yunnanensis is mediated by the cry protein-encoding 103-megadalton plasmid.

G Srinivas 1, S J Vennison 1, S N Sudha 1, P Balasubramanian 1, V Sekar 1
PMCID: PMC168575  PMID: 9212426

Abstract

In sporulating cultures of Bacillus thuringiensis subsp. yunnanensis HD977, two cell types are observed: cells forming only spores and cells forming only crystals. Curing analysis suggested that the crystal proteins are plasmid encoded. Through plasmid transfer experiments, it was established that a 103-MDa plasmid is involved in the crystal production. Conjugal transfer of this plasmid to Cry- recipient cells of Bacillus thuringiensis subsp. kurstaki HD73-26 conferred the ability to produce crystals exclusively on asporogenous cells of the recipient, indicating that the 103-MDa plasmid mediates the unique regulation of Cry protein production. When the dipteran-specific cryIVB gene was introduced into wild-type (Cry+) and Cry- backgrounds of B. thuringiensis subsp. yunnanensis by phage CP51ts45-mediated transduction, similar to all other B. thuringiensis strains, irregular crystals of CryIVB protein were produced by spore-forming cells in both backgrounds. However, the synthesis of the bipyramidal inclusions of B. thuringiensis subsp. yunnanensis was still limited only to asporogenous cells of the transductant. Thus, it appears that the unique property of exclusive crystal formation in asporogenous cells of B. thuringiensis subsp. yunnanensis is associated with the crystal protein gene(s) per se or its cis acting elements. As the crystals in B. thuringiensis subsp. yunnanensis were formed only in asporogenous cells, attempts were made to find out whether crystal formation had any inhibitory effect on sporulation. It was observed that both Cry+ and Cry- strains of B. thuringiensis subsp. yunnanensis (HD977 and HD977-1, respectively) exhibited comparable sporulation efficiencies. In addition, the Cry- B. thuringiensis subsp. kurstaki host (HD73-26) and its Cry+ transconjugant (HD73-26-16), expressing the B. thuringiensis subsp. yunnanensis crystal protein, were also comparable in their sporulation efficiencies, indicating that production of the crystal proteins of B. thuringiensis subsp. yunnanensis does not affect the process of sporulation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agaisse H., Lereclus D. Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol Microbiol. 1994 Jul;13(1):97–107. doi: 10.1111/j.1365-2958.1994.tb00405.x. [DOI] [PubMed] [Google Scholar]
  2. Bora R. S., Murty M. G., Shenbagarathai R., Sekar V. Introduction of a Lepidopteran-Specific Insecticidal Crystal Protein Gene of Bacillus thuringiensis subsp. kurstaki by Conjugal Transfer into a Bacillus megaterium Strain That Persists in the Cotton Phyllosphere. Appl Environ Microbiol. 1994 Jan;60(1):214–222. doi: 10.1128/aem.60.1.214-222.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brown K. L., Whiteley H. R. Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4166–4170. doi: 10.1073/pnas.85.12.4166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chung J. D., Stephanopoulos G., Ireton K., Grossman A. D. Gene expression in single cells of Bacillus subtilis: evidence that a threshold mechanism controls the initiation of sporulation. J Bacteriol. 1994 Apr;176(7):1977–1984. doi: 10.1128/jb.176.7.1977-1984.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fischer H. M., Lüthy P., Schweitzer S. Introduction of plasmid pC194 into Bacillus thuringiensis by protoplast transformation and plasmid transfer. Arch Microbiol. 1984 Oct;139(2-3):213–217. doi: 10.1007/BF00402002. [DOI] [PubMed] [Google Scholar]
  6. González J. M., Jr, Brown B. J., Carlton B. C. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6951–6955. doi: 10.1073/pnas.79.22.6951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. González J. M., Jr, Carlton B. C. A large transmissible plasmid is required for crystal toxin production in Bacillus thuringiensis variety israelensis. Plasmid. 1984 Jan;11(1):28–38. doi: 10.1016/0147-619x(84)90004-0. [DOI] [PubMed] [Google Scholar]
  8. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jensen G. B., Wilcks A., Petersen S. S., Damgaard J., Baum J. A., Andrup L. The genetic basis of the aggregation system in Bacillus thuringiensis subsp. israelensis is located on the large conjugative plasmid pXO16. J Bacteriol. 1995 May;177(10):2914–2917. doi: 10.1128/jb.177.10.2914-2917.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lecadet M. M., Chaufaux J., Ribier J., Lereclus D. Construction of Novel Bacillus thuringiensis Strains with Different Insecticidal Activities by Transduction and Transformation. Appl Environ Microbiol. 1992 Mar;58(3):840–849. doi: 10.1128/aem.58.3.840-849.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Minnich S. A., Aronson A. I. Regulation of protoxin synthesis in Bacillus thuringiensis. J Bacteriol. 1984 May;158(2):447–454. doi: 10.1128/jb.158.2.447-454.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reddy A., Battisti L., Thorne C. B. Identification of self-transmissible plasmids in four Bacillus thuringiensis subspecies. J Bacteriol. 1987 Nov;169(11):5263–5270. doi: 10.1128/jb.169.11.5263-5270.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ribier J., Lecadet M. M. Etude ultrastructurale et cinétique de la sporulation de Bacillus thuringiensis var. Berliner 1715. Remarques sur la formation de l'inclusion parasporale. Ann Microbiol (Paris) 1973 Apr;124(3):311–344. [PubMed] [Google Scholar]
  16. Rubikas J., Androsiuniene D., Chestukhina G., Smirnova T., Kapitonova O., Stepanov V. Crystal protein formed by Bacillus subtilis cells. J Bacteriol. 1987 Nov;169(11):5258–5262. doi: 10.1128/jb.169.11.5258-5262.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ruhfel R. E., Robillard N. J., Thorne C. B. Interspecies transduction of plasmids among Bacillus anthracis, B. cereus, and B. thuringiensis. J Bacteriol. 1984 Mar;157(3):708–711. doi: 10.1128/jb.157.3.708-711.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Santo L. Y., Doi R. H. Crystal formation by a ribonucleic acid polymerase mutant of Bacillus subtilis. J Bacteriol. 1973 Oct;116(1):479–482. doi: 10.1128/jb.116.1.479-482.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sekar V., Carlton B. C. Molecular cloning of the delta-endotoxin gene of Bacillus thuringiensis var. israelensis. Gene. 1985;33(2):151–158. doi: 10.1016/0378-1119(85)90089-7. [DOI] [PubMed] [Google Scholar]
  21. Shivakumar A. G., Vanags R. I., Wilcox D. R., Katz L., Vary P. S., Fox J. L. Gene dosage effect on the expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis and Bacillus megaterium. Gene. 1989 Jun 30;79(1):21–31. doi: 10.1016/0378-1119(89)90089-9. [DOI] [PubMed] [Google Scholar]
  22. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES