Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2814–2820. doi: 10.1128/aem.63.7.2814-2820.1997

Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria.

J Meens 1, M Herbort 1, M Klein 1, R Freudl 1
PMCID: PMC168578  PMID: 9212429

Abstract

Heterologous protein secretion was studied in the gram-positive bacteria Bacillus subtilis and Staphylococcus carnosus by using the Escherichia coli outer membrane protein OmpA as a model protein. The OmpA protein was found to be translocated across the plasma membrane of both microorganisms. However, the majority of the translocated OmpA was similarly degraded in B. subtilis and S. carnosus despite the fact that the latter organism does not secrete soluble exoproteases into the culture medium. The finding that purified OmpA, which was added externally to the culture medium of growing S. carnosus cells, remained intact indicates that newly synthesized and exported OmpA is degraded by one or more cell-associated proteases rather than by a soluble exoprotease. Fusion of the mature part of OmpA to the pre-pro part of a lipase from Staphylococcus hyicus allowed the efficient release of the corresponding propeptide-OmpA hybrid protein into the supernatant and completely prevented the cell-associated proteolytic degradation of the mature OmpA, most likely reflecting an important function of the propeptide during secretion of its natural mature lipase moiety. The relevance of our findings for the biotechnological use of gram-positive bacteria as host organisms for the secretory production of heterologous proteins is discussed.

Full Text

The Full Text of this article is available as a PDF (679.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ayora S., Lindgren P. E., Götz F. Biochemical properties of a novel metalloprotease from Staphylococcus hyicus subsp. hyicus involved in extracellular lipase processing. J Bacteriol. 1994 Jun;176(11):3218–3223. doi: 10.1128/jb.176.11.3218-3223.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Braun P., Tommassen J., Filloux A. Role of the propeptide in folding and secretion of elastase of Pseudomonas aeruginosa. Mol Microbiol. 1996 Jan;19(2):297–306. doi: 10.1046/j.1365-2958.1996.381908.x. [DOI] [PubMed] [Google Scholar]
  3. Chen R., Henning U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol Microbiol. 1996 Mar;19(6):1287–1294. doi: 10.1111/j.1365-2958.1996.tb02473.x. [DOI] [PubMed] [Google Scholar]
  4. Demleitner G., Götz F. Evidence for importance of the Staphylococcus hyicus lipase pro-peptide in lipase secretion, stability and activity. FEMS Microbiol Lett. 1994 Aug 15;121(2):189–197. doi: 10.1111/j.1574-6968.1994.tb07098.x. [DOI] [PubMed] [Google Scholar]
  5. Freudl R., Klose M., Henning U. Export and sorting of the Escherichia coli outer membrane protein OmpA. J Bioenerg Biomembr. 1990 Jun;22(3):441–449. doi: 10.1007/BF00763176. [DOI] [PubMed] [Google Scholar]
  6. Freudl R., Schwarz H., Klose M., Movva N. R., Henning U. The nature of information, required for export and sorting, present within the outer membrane protein OmpA of Escherichia coli K-12. EMBO J. 1985 Dec 16;4(13A):3593–3598. doi: 10.1002/j.1460-2075.1985.tb04122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gilleland H. E., Jr, Matthews-Greer J. M. Perspectives on the potential for successful development of outer membrane protein vaccines. Eur J Clin Microbiol. 1987 Jun;6(3):231–233. doi: 10.1007/BF02017606. [DOI] [PubMed] [Google Scholar]
  8. Götz F., Popp F., Korn E., Schleifer K. H. Complete nucleotide sequence of the lipase gene from Staphylococcus hyicus cloned in Staphylococcus carnosus. Nucleic Acids Res. 1985 Aug 26;13(16):5895–5906. doi: 10.1093/nar/13.16.5895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ikemura H., Takagi H., Inouye M. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J Biol Chem. 1987 Jun 5;262(16):7859–7864. [PubMed] [Google Scholar]
  10. Jacobs M., Andersen J. B., Kontinen V., Sarvas M. Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro-sequences. Mol Microbiol. 1993 May;8(5):957–966. doi: 10.1111/j.1365-2958.1993.tb01640.x. [DOI] [PubMed] [Google Scholar]
  11. Kawamura F., Doi R. H. Construction of a Bacillus subtilis double mutant deficient in extracellular alkaline and neutral proteases. J Bacteriol. 1984 Oct;160(1):442–444. doi: 10.1128/jb.160.1.442-444.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klose M., Schimz K. L., van der Wolk J., Driessen A. J., Freudl R. Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. J Biol Chem. 1993 Feb 25;268(6):4504–4510. [PubMed] [Google Scholar]
  13. Kontinen V. P., Sarvas M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol. 1993 May;8(4):727–737. doi: 10.1111/j.1365-2958.1993.tb01616.x. [DOI] [PubMed] [Google Scholar]
  14. Lazar S. W., Kolter R. SurA assists the folding of Escherichia coli outer membrane proteins. J Bacteriol. 1996 Mar;178(6):1770–1773. doi: 10.1128/jb.178.6.1770-1773.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liebl W., Götz F. Studies on lipase directed export of Escherichia coli beta-lactamase in Staphylococcus carnosus. Mol Gen Genet. 1986 Jul;204(1):166–173. doi: 10.1007/BF00330205. [DOI] [PubMed] [Google Scholar]
  16. Lipinska B., Zylicz M., Georgopoulos C. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J Bacteriol. 1990 Apr;172(4):1791–1797. doi: 10.1128/jb.172.4.1791-1797.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lugtenberg B., Van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta. 1983 Mar 21;737(1):51–115. doi: 10.1016/0304-4157(83)90014-x. [DOI] [PubMed] [Google Scholar]
  18. Lundström K., Palva I., Käriäinen L., Garoff H., Sarvas M., Pettersson R. F. Secretion of Semliki Forest virus membrane glycoprotein E1 from Bacillus subtilis. Virus Res. 1985 Feb;2(1):69–83. doi: 10.1016/0168-1702(85)90061-9. [DOI] [PubMed] [Google Scholar]
  19. Meens J., Frings E., Klose M., Freudl R. An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtilis. Mol Microbiol. 1993 Aug;9(4):847–855. doi: 10.1111/j.1365-2958.1993.tb01743.x. [DOI] [PubMed] [Google Scholar]
  20. Overhoff B., Klein M., Spies M., Freudl R. Identification of a gene fragment which codes for the 364 amino-terminal amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in gram-positive and gram-negative bacteria. Mol Gen Genet. 1991 Sep;228(3):417–423. doi: 10.1007/BF00260635. [DOI] [PubMed] [Google Scholar]
  21. Poolman J. T. Development of a meningococcal vaccine. Infect Agents Dis. 1995 Mar;4(1):13–28. [PubMed] [Google Scholar]
  22. Pschorr J., Bieseler B., Fritz H. J. Production of the immunoglobulin variable domain REIv via a fusion protein synthesized and secreted by Staphylococcus carnosus. Biol Chem Hoppe Seyler. 1994 Apr;375(4):271–280. doi: 10.1515/bchm3.1994.375.4.271. [DOI] [PubMed] [Google Scholar]
  23. Pugsley A. P. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993 Mar;57(1):50–108. doi: 10.1128/mr.57.1.50-108.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Puohiniemi R., Butcher S., Tarkka E., Sarvas M. High level production of Escherichia coli outer membrane proteins OmpA and OmpF intracellularly in Bacillus subtilis. FEMS Microbiol Lett. 1991 Sep 15;67(1):29–33. doi: 10.1016/0378-1097(91)90438-g. [DOI] [PubMed] [Google Scholar]
  25. Puohiniemi R., Simonen M., Muttilainen S., Himanen J. P., Sarvas M. Secretion of the Escherichia coli outer membrane proteins OmpA and OmpF in Bacillus subtilis is blocked at an early intracellular step. Mol Microbiol. 1992 Apr;6(8):981–990. doi: 10.1111/j.1365-2958.1992.tb02164.x. [DOI] [PubMed] [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saunders C. W., Schmidt B. J., Mallonee R. L., Guyer M. S. Secretion of human serum albumin from Bacillus subtilis. J Bacteriol. 1987 Jul;169(7):2917–2925. doi: 10.1128/jb.169.7.2917-2925.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schnappinger D., Geissdörfer W., Sizemore C., Hillen W. Extracellular expression of native human anti-lysozyme fragments in Staphylococcus carnosus. FEMS Microbiol Lett. 1995 Jun 15;129(2-3):121–127. doi: 10.1111/j.1574-6968.1995.tb07568.x. [DOI] [PubMed] [Google Scholar]
  29. Schweizer M., Hindennach I., Garten W., Henning U. Major proteins of the Escherichia coli outer cell envelope membrane. Interaction of protein II with lipopolysaccharide. Eur J Biochem. 1978 Jan 2;82(1):211–217. doi: 10.1111/j.1432-1033.1978.tb12013.x. [DOI] [PubMed] [Google Scholar]
  30. Shinde U., Inouye M. Intramolecular chaperones and protein folding. Trends Biochem Sci. 1993 Nov;18(11):442–446. doi: 10.1016/0968-0004(93)90146-e. [DOI] [PubMed] [Google Scholar]
  31. Shinde U., Li Y., Chatterjee S., Inouye M. Folding pathway mediated by an intramolecular chaperone. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6924–6928. doi: 10.1073/pnas.90.15.6924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Silen J. L., Frank D., Fujishige A., Bone R., Agard D. A. Analysis of prepro-alpha-lytic protease expression in Escherichia coli reveals that the pro region is required for activity. J Bacteriol. 1989 Mar;171(3):1320–1325. doi: 10.1128/jb.171.3.1320-1325.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Simonen M., Palva I. Protein secretion in Bacillus species. Microbiol Rev. 1993 Mar;57(1):109–137. doi: 10.1128/mr.57.1.109-137.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Strauch K. L., Beckwith J. An Escherichia coli mutation preventing degradation of abnormal periplasmic proteins. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1576–1580. doi: 10.1073/pnas.85.5.1576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Strauch M. A., Hoch J. A. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol. 1993 Feb;7(3):337–342. doi: 10.1111/j.1365-2958.1993.tb01125.x. [DOI] [PubMed] [Google Scholar]
  36. Suciu D., Inouye M. The 19-residue pro-peptide of staphylococcal nuclease has a profound secretion-enhancing ability in Escherichia coli. Mol Microbiol. 1996 Jul;21(1):181–195. doi: 10.1046/j.1365-2958.1996.6211341.x. [DOI] [PubMed] [Google Scholar]
  37. Surrey T., Jähnig F. Refolding and oriented insertion of a membrane protein into a lipid bilayer. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7457–7461. doi: 10.1073/pnas.89.16.7457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wieland K. P., Wieland B., Götz F. A promoter-screening plasmid and xylose-inducible, glucose-repressible expression vectors for Staphylococcus carnosus. Gene. 1995 May 26;158(1):91–96. doi: 10.1016/0378-1119(95)00137-u. [DOI] [PubMed] [Google Scholar]
  39. Wu X. C., Lee W., Tran L., Wong S. L. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol. 1991 Aug;173(16):4952–4958. doi: 10.1128/jb.173.16.4952-4958.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yamada H., Mizushima S. Interaction between major outer membrane protein (O-8) and lipopolysaccharide in Escherichia coli K12. Eur J Biochem. 1980 Jan;103(1):209–218. doi: 10.1111/j.1432-1033.1980.tb04305.x. [DOI] [PubMed] [Google Scholar]
  41. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  42. von Specht B. U., Knapp B., Muth G., Bröker M., Hungerer K. D., Diehl K. D., Massarrat K., Seemann A., Domdey H. Protection of immunocompromised mice against lethal infection with Pseudomonas aeruginosa by active or passive immunization with recombinant P. aeruginosa outer membrane protein F and outer membrane protein I fusion proteins. Infect Immun. 1995 May;63(5):1855–1862. doi: 10.1128/iai.63.5.1855-1862.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES