Abstract
A survey of 186 soluble lymphocyte proteins for genetic polymorphism was carried out utilizing two-dimensional electrophoresis of 14C-labeled phytohemagglutinin (PHA)-stimulated human lymphocyte proteins. Nineteen of these proteins exhibited positional variation consistent with independent genetic polymorphism in a primary sample of 28 individuals. Each of these polymorphisms was characterized by quantitative gene-dosage dependence insofar as the heterozygous phenotype expressed approximately 50% of each allelic gene product as was seen in homozygotes. Patterns observed were also identical in monozygotic twins, replicate samples, and replicate gels. The three expected phenotypes (two homozygotes and a heterozygote) were observed in each of 10 of these polymorphisms while the remaining nine had one of the homozygous classes absent. The presence of the three phenotypes, the demonstration of gene-dosage dependence, and our own and previous pedigree analysis of certain of these polymorphisms supports the genetic basis of these variants. Based on this data, the frequency of polymorphic loci for man is: P = 19/186 = .102, and the average heterozygosity is .024. This estimate is approximately 1/3 to 1/2 the rate of polymorphism previously estimated for man in other studies using one-dimensional electrophoresis of isozyme loci. The newly described polymorphisms and others which should be detectable in larger protein surveys with two-dimensional electrophoresis hold promise as genetic markers of the human genome for use in gene mapping and pedigree analyses.
Full text
PDF










Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson L., Anderson N. G. High resolution two-dimensional electrophoresis of human plasma proteins. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5421–5425. doi: 10.1073/pnas.74.12.5421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bossinger J., Miller M. J., Vo K. P., Geiduschek E. P., Xuong N. H. Quantitative analysis of two-dimensional electrophoretograms. J Biol Chem. 1979 Aug 25;254(16):7986–7998. [PubMed] [Google Scholar]
- Botstein D., White R. L., Skolnick M., Davis R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314–331. [PMC free article] [PubMed] [Google Scholar]
- Brown A. J., Langley C. H. Reevaluation of level of genic heterozygosity in natural population of Drosophila melanogaster by two-dimensional electrophoresis. Proc Natl Acad Sci U S A. 1979 May;76(5):2381–2384. doi: 10.1073/pnas.76.5.2381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bucknall W. E., Kazazian H. H., Jr, Clement L. T., Childs B. Electrophoretic study of human ribosomal core proteins: evidence for selection against variation. Johns Hopkins Med J. 1975 Sep;137(3):123–126. [PubMed] [Google Scholar]
- Cohen P. T., Omenn G. S., Motulsky A. G., Chen S. H., Giblett E. R. Restricted variation in the glycolytic enzymes of human brain and erythrocytes. Nat New Biol. 1973 Feb 21;241(112):229–233. doi: 10.1038/newbio241229a0. [DOI] [PubMed] [Google Scholar]
- Comings D. E. Pc 1 Duarte, a common polymorphism of a human brain protein, and its relationship to depressive disease and multiple sclerosis. Nature. 1979 Jan 4;277(5691):28–32. doi: 10.1038/277028a0. [DOI] [PubMed] [Google Scholar]
- Comings D. E., Pekkula-Flagan A. Two-dimensional gel electrophoresis of human brain proteins. V. Non-equilibrium gel electrophoresis, with detection of a myelin basic protein mutation--MBL-Duarte. Clin Chem. 1982 Apr;28(4 Pt 2):813–818. [PubMed] [Google Scholar]
- Comings D. E. Two-dimensional gel electrophoresis of human brain proteins. IV. Disorders of glial proliferation and a polymorphism of glial fibrillary acidic protein--GFAP Duarte. Clin Chem. 1982 Apr;28(4 Pt 2):805–812. [PubMed] [Google Scholar]
- Elston R. C., Lange K. The prior probability of autosomal linkage. Ann Hum Genet. 1975 Jan;38(3):341–350. doi: 10.1111/j.1469-1809.1975.tb00619.x. [DOI] [PubMed] [Google Scholar]
- Garrels J. I. Two dimensional gel electrophoresis and computer analysis of proteins synthesized by clonal cell lines. J Biol Chem. 1979 Aug 25;254(16):7961–7977. [PubMed] [Google Scholar]
- Goldman D., Merril C. R., Polinsky R. J., Ebert M. H. Lymphocyte proteins in Huntington's disease: quantitative analysis by use of two-dimensional electrophoresis and computerized densitometry. Clin Chem. 1982 Apr;28(4 Pt 2):1021–1025. [PubMed] [Google Scholar]
- Hamaguchi H., Ohta A., Mukai R., Yabe T., Yamada M. Genetic analysis of human lymphocyte proteins by two-dimensional gel electrophoresis: 1. Detection of genetic variant polypeptides in PHA-stimulated peripheral blood lymphocytes. Hum Genet. 1981;59(3):215–220. doi: 10.1007/BF00283667. [DOI] [PubMed] [Google Scholar]
- Hamaguchi H., Ohta A., Mukai R., Yabe T., Yamada M. Genetic analysis of human lymphocyte proteins by two-dimensional gel electrophoresis: 1. Detection of genetic variant polypeptides in PHA-stimulated peripheral blood lymphocytes. Hum Genet. 1981;59(3):215–220. doi: 10.1007/BF00283667. [DOI] [PubMed] [Google Scholar]
- McConkey E. H., Taylor B. J., Phan D. Human heterozygosity: a new estimate. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6500–6504. doi: 10.1073/pnas.76.12.6500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Ebert M. Protein variations associated with Lesch-Nyhan syndrome. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6471–6475. doi: 10.1073/pnas.78.10.6471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Racine R. R., Langley C. H. Genetic heterozygosity in a natural population of Mus musculus assessed using two-dimensional electrophoresis. Nature. 1980 Feb 28;283(5750):855–857. doi: 10.1038/283855a0. [DOI] [PubMed] [Google Scholar]
- Renwick J. H. The mapping of human chromosomes. Annu Rev Genet. 1971;5:81–120. doi: 10.1146/annurev.ge.05.120171.000501. [DOI] [PubMed] [Google Scholar]
- Smith S. C., Racine R. R., Langley C. H. Lack of genic variation in the abundant proteins of human kidney. Genetics. 1980 Dec;96(4):967–974. doi: 10.1093/genetics/96.4.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg R. A., O'Farrell P. H., Friedrich U., Coffino P. Mutations causing charge alterations in regulatory subunits of the cAMP-dependent protein kinase of cultured S49 lymphoma cells. Cell. 1977 Mar;10(3):381–391. doi: 10.1016/0092-8674(77)90025-3. [DOI] [PubMed] [Google Scholar]
- Taylor J., Anderson N. L., Scandora A. E., Jr, Willard K. E., Anderson N. G. Design and implementation of a prototype Human Protein Index. Clin Chem. 1982 Apr;28(4 Pt 2):861–866. [PubMed] [Google Scholar]
- Vandekerckhove J., Leavitt J., Kakunaga T., Weber K. Coexpression of a mutant beta-actin and the two normal beta- and gamma-cytoplasmic actins in a stably transformed human cell line. Cell. 1980 Dec;22(3):893–899. doi: 10.1016/0092-8674(80)90566-8. [DOI] [PubMed] [Google Scholar]
- Vandekerckhove J., Weber K. At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol. 1978 Dec 25;126(4):783–802. doi: 10.1016/0022-2836(78)90020-7. [DOI] [PubMed] [Google Scholar]
- Walton K. E., Styer D., Gruenstein E. I. Genetic polymorphism in normal human fibroblasts as analyzed by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem. 1979 Aug 25;254(16):7951–7960. [PubMed] [Google Scholar]
- Willard K. E., Anderson N. G. Two-dimensional analysis of human lymphocyte proteins: I. An assay for lymphocyte effectors. Clin Chem. 1981 Aug;27(8):1327–1334. [PubMed] [Google Scholar]


