Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Jul;63(7):2857–2862. doi: 10.1128/aem.63.7.2857-2862.1997

Thiram and dimethyldithiocarbamic acid interconversion in Saccharomyces cerevisiae: a possible metabolic pathway under the control of the glutathione redox cycle.

M T Elskens 1, M J Penninckx 1
PMCID: PMC168582  PMID: 9212433

Abstract

A rapid decrease of intracellular glutathione (GSH) was observed when exponentially growing cells of Saccharomyces cerevisiae were treated with sublethal concentrations of either dimethyldithiocarbamic acid or thiram [bis(dimethylthiocarbamoyl) disulfide]. The underlying mechanism of this effect possibly involves the intracellular oxidation of dimethyldithiocarbamate anions to thiram, which in turn oxidizes GSH. Overall, a linear relationship was found between thiram concentrations up to 21 microM and production of oxidized GSH (GSSG). Cytochrome c can serve as the final electron acceptor for dimethyldithiocarbamate reoxidation, and it was demonstrated in vitro that NADPH handles the final electron transfer from GSSG to the fungicide by glutathione reductase. These cycling reactions induce transient alterations in the intracellular redox state of several electron carriers and interfere with the respiration of the yeast. Thiram and dimethyldithiocarbamic acid also inactivate yeast glutathione reductase when the fungicide is present within the cells as the disulfide. Hence, whenever the GSH regeneration rate falls below its oxidation rate, the GSH:GSSG molar ratio drops from 45 to 1. Inhibition of glutathione reductase may be responsible for the saturation kinetics observed in rates of thiram elimination and uptake by the yeast. The data suggest also a leading role for the GSH redox cycle in the control of thiram and dimethyldithiocarbamic acid fungitoxicity. Possible pathways for the handling of thiram and dimethyldithiocarbamic acid by yeast are considered with respect to the physiological status, the GSH content, and the activity of glutathione reductase of the cells.

Full Text

The Full Text of this article is available as a PDF (245.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allalunis-Turner M. J., Chapman J. D. Evaluation of diethyldithiocarbamate as a radioprotector of bone marrow. Int J Radiat Oncol Biol Phys. 1984 Sep;10(9):1569–1573. doi: 10.1016/0360-3016(84)90505-4. [DOI] [PubMed] [Google Scholar]
  2. Elskens M. T., Jaspers C. J., Penninckx M. J. Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1991 Mar;137(3):637–644. doi: 10.1099/00221287-137-3-637. [DOI] [PubMed] [Google Scholar]
  3. Elskens M. T., Penninckx M. J. In vitro inactivation of yeast glutathione reductase by tetramethylthiuram disulphide. Eur J Biochem. 1995 Aug 1;231(3):667–672. doi: 10.1111/j.1432-1033.1995.tb20746.x. [DOI] [PubMed] [Google Scholar]
  4. Evans R. G. Tumor radiosensitization with concomitant bone marrow radioprotection: a study in mice using diethyldithiocarbamate (DDC) under oxygenated and hypoxic conditions. Int J Radiat Oncol Biol Phys. 1985 Jun;11(6):1163–1169. doi: 10.1016/0360-3016(85)90065-3. [DOI] [PubMed] [Google Scholar]
  5. Eyer P., Podhradský D. Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman's reagent. Anal Biochem. 1986 Feb 15;153(1):57–66. doi: 10.1016/0003-2697(86)90061-8. [DOI] [PubMed] [Google Scholar]
  6. Forman H. J., York J. L., Fisher A. B. Mechanism for the potentiation of oxygen toxicity by disulfiram. J Pharmacol Exp Ther. 1980 Mar;212(3):452–455. [PubMed] [Google Scholar]
  7. Goldstein B. D., Rozen M. G., Quintavalla J. C., Amoruso M. A. Decrease in mouse lung and liver glutathione peroxidase activity and potentiation of the lethal effects of ozone and paraquat by the superoxide dismutase inhibitor diethyldithiocarbamate. Biochem Pharmacol. 1979;28(1):27–30. doi: 10.1016/0006-2952(79)90265-x. [DOI] [PubMed] [Google Scholar]
  8. Grenson M., Mousset M., Wiame J. M., Bechet J. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):325–338. doi: 10.1016/0304-4165(66)90387-4. [DOI] [PubMed] [Google Scholar]
  9. Halliwell B. Drug antioxidant effects. A basis for drug selection? Drugs. 1991 Oct;42(4):569–605. doi: 10.2165/00003495-199142040-00003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heikkila R. E., Cabbat F. S., Cohen G. In vivo inhibition of superoxide dismutase in mice by diethyldithiocarbamate. J Biol Chem. 1976 Apr 10;251(7):2182–2185. [PubMed] [Google Scholar]
  11. Kappus H. Overview of enzyme systems involved in bio-reduction of drugs and in redox cycling. Biochem Pharmacol. 1986 Jan 1;35(1):1–6. doi: 10.1016/0006-2952(86)90544-7. [DOI] [PubMed] [Google Scholar]
  12. Kramer R. A., Zakher J., Kim G. Role of the glutathione redox cycle in acquired and de novo multidrug resistance. Science. 1988 Aug 5;241(4866):694–697. doi: 10.1126/science.3399900. [DOI] [PubMed] [Google Scholar]
  13. Kumar K. S., Sancho A. M., Weiss J. F. A novel interaction of diethyldithiocarbamate with the glutathione/glutathione peroxidase system. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1463–1467. doi: 10.1016/0360-3016(86)90195-1. [DOI] [PubMed] [Google Scholar]
  14. Masuda Y., Nakayama N. Protective effect of diethyldithiocarbamate and carbon disulfide against liver injury induced by various hepatotoxic agents. Biochem Pharmacol. 1982 Sep 1;31(17):2713–2725. doi: 10.1016/0006-2952(82)90124-1. [DOI] [PubMed] [Google Scholar]
  15. Messenguy F. Regulation of arginine biosynthesis in Saccharomyces cerevisiae: isolation of a cis-dominant, constitutive mutant for ornithine carbamoyltransferase synthesis. J Bacteriol. 1976 Oct;128(1):49–55. doi: 10.1128/jb.128.1.49-55.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Milas L., Hunter N., Ito H., Peters L. J. In vivo radioprotective activities of diethyldithiocarbamate (DDC). Int J Radiat Oncol Biol Phys. 1984 Dec;10(12):2335–2343. doi: 10.1016/0360-3016(84)90242-6. [DOI] [PubMed] [Google Scholar]
  17. Puglia C. D., Loeb G. A. Influence of rat brain superoxide dismutase inhibition by diethyldithiocarbamate upon the rate of development of central nervous system oxygen toxicity. Toxicol Appl Pharmacol. 1984 Sep 15;75(2):258–264. doi: 10.1016/0041-008x(84)90208-4. [DOI] [PubMed] [Google Scholar]
  18. Ramos F., Thuriaux P., Wiame J. M., Bechet J. The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae. Eur J Biochem. 1970 Jan;12(1):40–47. doi: 10.1111/j.1432-1033.1970.tb00818.x. [DOI] [PubMed] [Google Scholar]
  19. Reed D. J. Regulation of reductive processes by glutathione. Biochem Pharmacol. 1986 Jan 1;35(1):7–13. doi: 10.1016/0006-2952(86)90545-9. [DOI] [PubMed] [Google Scholar]
  20. STROMME J. H. Effects of diethyldithiocarbamate and disulfiram on glucose metabolism and glutathione content of human erythrocytes. Biochem Pharmacol. 1963 Jul;12:705–715. doi: 10.1016/0006-2952(63)90046-7. [DOI] [PubMed] [Google Scholar]
  21. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  22. Trombetta L. D., Toulon M., Jamall I. S. Protective effects of glutathione on diethyldithiocarbamate (DDC) cytotoxicity: a possible mechanism. Toxicol Appl Pharmacol. 1988 Mar 30;93(1):154–164. doi: 10.1016/0041-008x(88)90035-x. [DOI] [PubMed] [Google Scholar]
  23. Westman G., Marklund S. L. Diethyldithiocarbamate, a superoxide dismutase inhibitor, decreases the radioresistance of Chinese hamster cells. Radiat Res. 1980 Aug;83(2):303–311. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES