Abstract
The gene xysA from Streptomyces halstedii JM8 encodes a protein of 461 amino acids (Xys1) which is secreted into the culture supernatant as a protein of 45 kDa (Xys1L). Later, this form is proteolytically processed after residue D-362 to produce the protein Xys1S, which conserves the same xylanolytic activity. The cleavage removes a domain of 99 amino acids that shows similarity to bacterial cellulose binding domains and that allows the protein Xys1L to bind to crystalline cellulose (Avicel). Expression of this monocistronic gene is affected by the carbon source present in the culture medium, xylan being the best inducer. By using an anti-Xys1L serum, we have been able to detect xylanases similar in size to Xys1L and Xys1S in most of the different Streptomyces species analyzed, suggesting the ubiquity of these types of xylanases and their processing mechanism.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blaak H., Schrempf H. Binding and substrate specificities of a Streptomyces olivaceoviridis chitinase in comparison with its proteolytically processed form. Eur J Biochem. 1995 Apr 1;229(1):132–139. doi: 10.1111/j.1432-1033.1995.tb20447.x. [DOI] [PubMed] [Google Scholar]
- Black G. W., Rixon J. E., Clarke J. H., Hazlewood G. P., Theodorou M. K., Morris P., Gilbert H. J. Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J. 1996 Oct 15;319(Pt 2):515–520. doi: 10.1042/bj3190515. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Din N., Forsythe I. J., Burtnick L. D., Gilkes N. R., Miller R. C., Jr, Warren R. A., Kilburn D. G. The cellulose-binding domain of endoglucanase A (CenA) from Cellulomonas fimi: evidence for the involvement of tryptophan residues in binding. Mol Microbiol. 1994 Feb;11(4):747–755. doi: 10.1111/j.1365-2958.1994.tb00352.x. [DOI] [PubMed] [Google Scholar]
- Einspanier R., Krause I., Calvete J. J., Töfper-Petersen E., Klostermeyer H., Karg H. Bovine seminal plasma aSFP: localization of disulfide bridges and detection of three different isoelectric forms. FEBS Lett. 1994 May 9;344(1):61–64. doi: 10.1016/0014-5793(94)00362-9. [DOI] [PubMed] [Google Scholar]
- Fernández-Abalos J. M., Sánchez P., Coll P. M., Villanueva J. R., Pérez P., Santamaría R. I. Cloning and nucleotide sequence of celA1, and endo-beta-1,4-glucanase-encoding gene from Streptomyces halstedii JM8. J Bacteriol. 1992 Oct;174(20):6368–6376. doi: 10.1128/jb.174.20.6368-6376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferreira L. M., Durrant A. J., Hall J., Hazlewood G. P., Gilbert H. J. Spatial separation of protein domains is not necessary for catalytic activity or substrate binding in a xylanase. Biochem J. 1990 Jul 1;269(1):261–264. doi: 10.1042/bj2690261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garda-Salas A. L., Santamaria R. I., Marcos M. J., Zhadan G. G., Villar E., Shnyrov V. L. Differential scanning calorimetry of the irreversible thermal denaturation of cellulase from Streptomyces halstedii JM8. Biochem Mol Biol Int. 1996 Feb;38(1):161–170. [PubMed] [Google Scholar]
- Garda A. L., Fernández-Abalos J. M., Sánchez P., Ruiz-Arribas A., Santamaría R. I. Two genes encoding an endoglucanase and a cellulose-binding protein are clustered and co-regulated by a TTA codon in Streptomyces halstedii JM8. Biochem J. 1997 Jun 1;324(Pt 2):403–411. doi: 10.1042/bj3240403. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giannotta F., Georis J., Moreau A., Mazy-Servais C., Joris B., Dusart J. A sequence-specific DNA-binding protein interacts with the xlnC upstream region of Streptomyces sp. strain EC3. FEMS Microbiol Lett. 1996 Aug 15;142(1):91–97. doi: 10.1111/j.1574-6968.1996.tb08413.x. [DOI] [PubMed] [Google Scholar]
- Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C., Jr, Warren R. A. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev. 1991 Jun;55(2):303–315. doi: 10.1128/mr.55.2.303-315.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilkes N. R., Kilburn D. G., Miller R. C., Jr, Warren R. A. Structural and functional analysis of a bacterial cellulase by proteolysis. J Biol Chem. 1989 Oct 25;264(30):17802–17808. [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishaque M., Kluepfel D. Cellulase complex of a mesophilic Streptomyces strain. Can J Microbiol. 1980 Feb;26(2):183–189. doi: 10.1139/m80-028. [DOI] [PubMed] [Google Scholar]
- Lin E. S., Wilson D. B. Identification of a celE-binding protein and its potential role in induction of the celE gene in Thermomonospora fusca. J Bacteriol. 1988 Sep;170(9):3843–3846. doi: 10.1128/jb.170.9.3843-3846.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreau A., Roberge M., Manin C., Shareck F., Kluepfel D., Morosoli R. Identification of two acidic residues involved in the catalysis of xylanase A from Streptomyces lividans. Biochem J. 1994 Aug 15;302(Pt 1):291–295. doi: 10.1042/bj3020291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moreau A., Shareck F., Kluepfel D., Morosoli R. Alteration of the cleavage mode and of the transglycosylation reactions of the xylanase A of Streptomyces lividans 1326 by site-directed mutagenesis of the Asn173 residue. Eur J Biochem. 1994 Jan 15;219(1-2):261–266. doi: 10.1111/j.1432-1033.1994.tb19937.x. [DOI] [PubMed] [Google Scholar]
- Moreau A., Shareck F., Kluepfel D., Morosoli R. Increase in catalytic activity and thermostability of the xylanase A of Streptomyces lividans 1326 by site-specific mutagenesis. Enzyme Microb Technol. 1994 May;16(5):420–424. doi: 10.1016/0141-0229(94)90158-9. [DOI] [PubMed] [Google Scholar]
- Perisic O., Xiao H., Lis J. T. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell. 1989 Dec 1;59(5):797–806. doi: 10.1016/0092-8674(89)90603-x. [DOI] [PubMed] [Google Scholar]
- Poole D. M., Hazlewood G. P., Huskisson N. S., Virden R., Gilbert H. J. The role of conserved tryptophan residues in the interaction of a bacterial cellulose binding domain with its ligand. FEMS Microbiol Lett. 1993 Jan 1;106(1):77–83. doi: 10.1111/j.1574-6968.1993.tb05938.x. [DOI] [PubMed] [Google Scholar]
- Ruiz-Arribas A., Fernández-Abalos J. M., Sánchez P., Garda A. L., Santamariá R. I. Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Appl Environ Microbiol. 1995 Jun;61(6):2414–2419. doi: 10.1128/aem.61.6.2414-2419.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruiz-Arribas A., Santamaría R. I., Zhadan G. G., Villar E., Shnyrov V. L. Differential scanning calorimetric study of the thermal stability of xylanase from Streptomyces halstedii JM8. Biochemistry. 1994 Nov 22;33(46):13787–13791. doi: 10.1021/bi00250a032. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlochtermeier A., Walter S., Schröder J., Moorman M., Schrempf H. The gene encoding the cellulase (Avicelase) Cel1 from Streptomyces reticuli and analysis of protein domains. Mol Microbiol. 1992 Dec;6(23):3611–3621. doi: 10.1111/j.1365-2958.1992.tb01797.x. [DOI] [PubMed] [Google Scholar]
- Shareck F., Roy C., Yaguchi M., Morosoli R., Kluepfel D. Sequences of three genes specifying xylanases in Streptomyces lividans. Gene. 1991 Oct 30;107(1):75–82. doi: 10.1016/0378-1119(91)90299-q. [DOI] [PubMed] [Google Scholar]
- Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomme P., Driver D. P., Amandoron E. A., Miller R. C., Jr, Antony R., Warren J., Kilburn D. G. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J Bacteriol. 1995 Aug;177(15):4356–4363. doi: 10.1128/jb.177.15.4356-4363.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
- White A., Withers S. G., Gilkes N. R., Rose D. R. Crystal structure of the catalytic domain of the beta-1,4-glycanase cex from Cellulomonas fimi. Biochemistry. 1994 Oct 25;33(42):12546–12552. doi: 10.1021/bi00208a003. [DOI] [PubMed] [Google Scholar]
- Wong K. K., Tan L. U., Saddler J. N. Multiplicity of beta-1,4-xylanase in microorganisms: functions and applications. Microbiol Rev. 1988 Sep;52(3):305–317. doi: 10.1128/mr.52.3.305-317.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright F., Bibb M. J. Codon usage in the G+C-rich Streptomyces genome. Gene. 1992 Apr 1;113(1):55–65. doi: 10.1016/0378-1119(92)90669-g. [DOI] [PubMed] [Google Scholar]