Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3151–3157. doi: 10.1128/aem.63.8.3151-3157.1997

Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae.

R M Berka 1, P Schneider 1, E J Golightly 1, S H Brown 1, M Madden 1, K M Brown 1, T Halkier 1, K Mondorf 1, F Xu 1
PMCID: PMC168614  PMID: 9251203

Abstract

A genomic DNA segment encoding an extracellular laccase was isolated from the thermophilic fungus Myceliophthora thermophila, and the nucleotide sequence of this gene was determined. The deduced amino acid sequence of M. thermophila laccase (MtL) shows homology to laccases from diverse fungal genera. A vector containing the M. thermophila laccase coding region, under transcriptional control of an Aspergillus oryzae alpha-amylase gene promoter and terminator, was constructed for heterologous expression in A. oryzae. The recombinant laccase expressed in A. oryzae was purified to electrophoretic homogeneity by anion-exchange chromatography. Amino-terminal sequence data suggests that MtL is synthesized as a preproenzyme. The molecular mass was estimated to be approximately 100 to 140 kDa by gel filtration on Sephacryl S-300 and to be 85 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Carbohydrate analysis revealed that MtL contains 40 to 60% glycosylation. The laccase shows an absorbance spectrum that is typical of blue copper oxidases, with maxima at 276 and 589 nm, and contains 3.9 copper atoms per subunit. With syringaldazine as a substrate, MtL has optimal activity at pH 6.5 and retains nearly 100% of its activity when incubated at 60 degrees C for 20 min. This is the first report of the cloning and heterologous expression of a thermostable laccase.

Full Text

The Full Text of this article is available as a PDF (319.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aramayo R., Timberlake W. E. Sequence and molecular structure of the Aspergillus nidulans yA (laccase I) gene. Nucleic Acids Res. 1990 Jun 11;18(11):3415–3415. doi: 10.1093/nar/18.11.3415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berka R. M., Barnett C. C. The development of gene expression systems for filamentous fungi. Biotechnol Adv. 1989;7(2):127–154. doi: 10.1016/0734-9750(89)90356-x. [DOI] [PubMed] [Google Scholar]
  3. Bligny R., Douce R. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Purification and properties of the enzyme. Biochem J. 1983 Feb 1;209(2):489–496. doi: 10.1042/bj2090489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bligny R., Gaillard J., Douce R. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Effects of a copper deficiency. Biochem J. 1986 Jul 15;237(2):583–588. doi: 10.1042/bj2370583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bolivar F., Rodriguez R. L., Greene P. J., Betlach M. C., Heyneker H. L., Boyer H. W., Crosa J. H., Falkow S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene. 1977;2(2):95–113. [PubMed] [Google Scholar]
  6. Bollag J. M., Leonowicz A. Comparative studies of extracellular fungal laccases. Appl Environ Microbiol. 1984 Oct;48(4):849–854. doi: 10.1128/aem.48.4.849-854.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bollag J. M., Shuttleworth K. L., Anderson D. H. Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol. 1988 Dec;54(12):3086–3091. doi: 10.1128/aem.54.12.3086-3091.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bourbonnais R., Paice M. G. Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990 Jul 2;267(1):99–102. doi: 10.1016/0014-5793(90)80298-w. [DOI] [PubMed] [Google Scholar]
  9. Childs R. E., Bardsley W. G. The steady-state kinetics of peroxidase with 2,2'-azino-di-(3-ethyl-benzthiazoline-6-sulphonic acid) as chromogen. Biochem J. 1975 Jan;145(1):93–103. doi: 10.1042/bj1450093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Choi G. H., Larson T. G., Nuss D. L. Molecular analysis of the laccase gene from the chestnut blight fungus and selective suppression of its expression in an isogenic hypovirulent strain. Mol Plant Microbe Interact. 1992 Mar-Apr;5(2):119–128. doi: 10.1094/mpmi-5-119. [DOI] [PubMed] [Google Scholar]
  11. Clutterbuck A. J. Absence of laccase from yellow-spored mutants of Aspergillus nidulans. J Gen Microbiol. 1972 May;70(3):423–435. doi: 10.1099/00221287-70-3-423. [DOI] [PubMed] [Google Scholar]
  12. Coll P. M., Tabernero C., Santamaría R., Pérez P. Characterization and structural analysis of the laccase I gene from the newly isolated ligninolytic basidiomycete PM1 (CECT 2971). Appl Environ Microbiol. 1993 Dec;59(12):4129–4135. doi: 10.1128/aem.59.12.4129-4135.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FELSENFELD G. The determination of cuprous ion in copper proteins. Arch Biochem Biophys. 1960 Apr;87:247–251. doi: 10.1016/0003-9861(60)90168-5. [DOI] [PubMed] [Google Scholar]
  14. Fernández-Larrea J., Stahl U. Isolation and characterization of a laccase gene from Podospora anserina. Mol Gen Genet. 1996 Oct 16;252(5):539–551. doi: 10.1007/BF02172400. [DOI] [PubMed] [Google Scholar]
  15. Germann U. A., Müller G., Hunziker P. E., Lerch K. Characterization of two allelic forms of Neurospora crassa laccase. Amino- and carboxyl-terminal processing of a precursor. J Biol Chem. 1988 Jan 15;263(2):885–896. [PubMed] [Google Scholar]
  16. Giesecke H., Obermaier B., Domdey H., Neubert W. J. Rapid sequencing of the Sendai virus 6.8 kb large (L) gene through primer walking with an automated DNA sequencer. J Virol Methods. 1992 Jul;38(1):47–60. doi: 10.1016/0166-0934(92)90168-d. [DOI] [PubMed] [Google Scholar]
  17. Jönsson L., Sjöström K., Häggström I., Nyman P. O. Characterization of a laccase gene from the white-rot fungus Trametes versicolor and structural features of basidiomycete laccases. Biochim Biophys Acta. 1995 Sep 6;1251(2):210–215. doi: 10.1016/0167-4838(95)00104-3. [DOI] [PubMed] [Google Scholar]
  18. Kojima Y., Tsukuda Y., Kawai Y., Tsukamoto A., Sugiura J., Sakaino M., Kita Y. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem. 1990 Sep 5;265(25):15224–15230. [PubMed] [Google Scholar]
  19. Korman D. R., Bayliss F. T., Barnett C. C., Carmona C. L., Kodama K. H., Royer T. J., Thompson S. A., Ward M., Wilson L. J., Berka R. M. Cloning, characterization, and expression of two alpha-amylase genes from Aspergillus niger var. awamori. Curr Genet. 1990 Mar;17(3):203–212. doi: 10.1007/BF00312611. [DOI] [PubMed] [Google Scholar]
  20. Leonowicz A., Grzywnowicz K., Malinowska M. Oxidative and demethylating activity of multiple forms of laccase from Pholiota mutabilis. Acta Biochim Pol. 1979;26(4):431–434. [PubMed] [Google Scholar]
  21. Malkin R., Malmström B. G. The state and function of copper in biological systems. Adv Enzymol Relat Areas Mol Biol. 1970;33:177–244. doi: 10.1002/9780470122785.ch4. [DOI] [PubMed] [Google Scholar]
  22. Messerschmidt A., Huber R. The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships. Eur J Biochem. 1990 Jan 26;187(2):341–352. doi: 10.1111/j.1432-1033.1990.tb15311.x. [DOI] [PubMed] [Google Scholar]
  23. Messerschmidt A., Rossi A., Ladenstein R., Huber R., Bolognesi M., Gatti G., Marchesini A., Petruzzelli R., Finazzi-Agró A. X-ray crystal structure of the blue oxidase ascorbate oxidase from zucchini. Analysis of the polypeptide fold and a model of the copper sites and ligands. J Mol Biol. 1989 Apr 5;206(3):513–529. doi: 10.1016/0022-2836(89)90498-1. [DOI] [PubMed] [Google Scholar]
  24. Messing J., Crea R., Seeburg P. H. A system for shotgun DNA sequencing. Nucleic Acids Res. 1981 Jan 24;9(2):309–321. doi: 10.1093/nar/9.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oakley B. R., Rinehart J. E., Mitchell B. L., Oakley C. E., Carmona C., Gray G. L., May G. S. Cloning, mapping and molecular analysis of the pyrG (orotidine-5'-phosphate decarboxylase) gene of Aspergillus nidulans. Gene. 1987;61(3):385–399. doi: 10.1016/0378-1119(87)90201-0. [DOI] [PubMed] [Google Scholar]
  26. Perry C. R., Smith M., Britnell C. H., Wood D. A., Thurston C. F. Identification of two laccase genes in the cultivated mushroom Agaricus bisporus. J Gen Microbiol. 1993 Jun;139(Pt 6):1209–1218. doi: 10.1099/00221287-139-6-1209. [DOI] [PubMed] [Google Scholar]
  27. Reinhammar B. Purification and properties of laccase and stellacyanin from Rhus vernicifera. Biochim Biophys Acta. 1970 Apr 7;205(1):35–47. doi: 10.1016/0005-2728(70)90059-9. [DOI] [PubMed] [Google Scholar]
  28. Rowlands R. T., Turner G. Nuclear and extranuclear inheritance of oligomycin resistance in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 12;126(3):201–216. doi: 10.1007/BF00267531. [DOI] [PubMed] [Google Scholar]
  29. Saloheimo M., Niku-Paavola M. L., Knowles J. K. Isolation and structural analysis of the laccase gene from the lignin-degrading fungus Phlebia radiata. J Gen Microbiol. 1991 Jul;137(7):1537–1544. doi: 10.1099/00221287-137-7-1537. [DOI] [PubMed] [Google Scholar]
  30. Sorge J. A. Bacteriophage lambda cloning vectors. Biotechnology. 1988;10:43–60. doi: 10.1016/b978-0-409-90042-2.50008-8. [DOI] [PubMed] [Google Scholar]
  31. Timberlake W. E., Barnard E. C. Organization of a gene cluster expressed specifically in the asexual spores of A. nidulans. Cell. 1981 Oct;26(1 Pt 1):29–37. doi: 10.1016/0092-8674(81)90030-1. [DOI] [PubMed] [Google Scholar]
  32. Vieira J., Messing J. Production of single-stranded plasmid DNA. Methods Enzymol. 1987;153:3–11. doi: 10.1016/0076-6879(87)53044-0. [DOI] [PubMed] [Google Scholar]
  33. Wahleithner J. A., Xu F., Brown K. M., Brown S. H., Golightly E. J., Halkier T., Kauppinen S., Pederson A., Schneider P. The identification and characterization of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet. 1996 Mar;29(4):395–403. doi: 10.1007/BF02208621. [DOI] [PubMed] [Google Scholar]
  34. Xu F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem. 1997 Jan 10;272(2):924–928. doi: 10.1074/jbc.272.2.924. [DOI] [PubMed] [Google Scholar]
  35. Xu F., Shin W., Brown S. H., Wahleithner J. A., Sundaram U. M., Solomon E. I. A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta. 1996 Feb 8;1292(2):303–311. doi: 10.1016/0167-4838(95)00210-3. [DOI] [PubMed] [Google Scholar]
  36. Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]
  37. Yaver D. S., Xu F., Golightly E. J., Brown K. M., Brown S. H., Rey M. W., Schneider P., Halkier T., Mondorf K., Dalboge H. Purification, characterization, molecular cloning, and expression of two laccase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol. 1996 Mar;62(3):834–841. doi: 10.1128/aem.62.3.834-841.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. von Heijne G. How signal sequences maintain cleavage specificity. J Mol Biol. 1984 Feb 25;173(2):243–251. doi: 10.1016/0022-2836(84)90192-x. [DOI] [PubMed] [Google Scholar]
  39. von Klopotek A. Revision der thermophilen Sporotrichum-Arten: Chrysosporium thermophilum (Apinis) comb. nov und Chrysosporium fergusii spec. nov. equal status conidialis von Corynascus thermophilus (Fergus und Sinden) comb. nov. Arch Microbiol. 1974 Jul 22;98(4):365–369. doi: 10.1007/BF00425296. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES