Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3199–3204. doi: 10.1128/aem.63.8.3199-3204.1997

Comparative sensitivities of Sabin and Mahoney poliovirus type 1 prototype strains and two recent isolates to low concentrations of glutaraldehyde.

M Chambon 1, C Jallat-Archimbaud 1, J L Bailly 1, J M Gourgand 1, F Charbonne 1, C Henquell 1, F Fuchs 1, H Peigue-Lafeuille 1
PMCID: PMC168617  PMID: 9251206

Abstract

Significant intratypic differences in the glutaraldehyde (GTA) sensitivity of echovirus isolates have been shown. While exploring ways to optimize the study of GTA sensitivity of enteroviruses, we also observed intratypic differences in poliovirus type 1 isolates collected in France. A suspension procedure was used for assessing the virucidal effect of GTA at low concentrations (< or = 0.10%) against purified viruses. Two recent isolates of poliovirus type 1 tested were first fully characterized by the PCR restriction fragment length polymorphism (RFLP) test. The RFLP pattern of clinical isolate 5617 was similar to that of poliovirus type 1 LS-c, 2ab (Sabin strain), confirming the vaccine origin of strain 5617. The RFLP pattern of strain 5915 recovered from sewage was different from that of the Mahoney strain, suggesting a genetic variation in this wild isolate. We then analyzed under the same controlled conditions the GTA sensitivities of both isolates and their respective prototype strains. The wild Mahoney and 5915 strains exhibited significantly lower sensitivities to GTA than did the vaccine Sabin and 5617 strains. The inactivation rates of clinical isolates 5617 and 5915 were very similar to those of their corresponding reference Sabin and Mahoney strains. Both the conformational structure of the capsid of each strain and the amino acid constitution of structural polypeptides could be involved in the variations observed. The relevance of our comparative sensitivity studies to standardization of virucidal tests is discussed.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailly J. L., Borman A. M., Peigue-Lafeuille H., Kean K. M. Natural isolates of ECHO virus type 25 with extensive variations in IRES sequences and different translational efficiencies. Virology. 1996 Jan 1;215(1):83–96. doi: 10.1006/viro.1996.0009. [DOI] [PubMed] [Google Scholar]
  2. Bailly J. L., Chambon M., Peigue-Lafeuille H., Laveran H., De Champs C., Beytout D. Activity of glutaraldehyde at low concentrations (less than 2%) against poliovirus and its relevance to gastrointestinal endoscope disinfection procedures. Appl Environ Microbiol. 1991 Apr;57(4):1156–1160. doi: 10.1128/aem.57.4.1156-1160.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balanant J., Guillot S., Candrea A., Delpeyroux F., Crainic R. The natural genomic variability of poliovirus analyzed by a restriction fragment length polymorphism assay. Virology. 1991 Oct;184(2):645–654. doi: 10.1016/0042-6822(91)90434-d. [DOI] [PubMed] [Google Scholar]
  4. Bloomfield S. F., Looney E. Evaluation of the repeatability and reproducibility of European suspension test methods for antimicrobial activity of disinfectants and antiseptics. J Appl Bacteriol. 1992 Jul;73(1):87–93. doi: 10.1111/j.1365-2672.1992.tb04975.x. [DOI] [PubMed] [Google Scholar]
  5. Chambon M., Bailly J. L., Peigue-Lafeuille H. Activity of glutaraldehyde at low concentrations against capsid proteins of poliovirus type 1 and echovirus type 25. Appl Environ Microbiol. 1992 Nov;58(11):3517–3521. doi: 10.1128/aem.58.11.3517-3521.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chambon M., Bailly J. L., Peigue-Lafeuille H. Comparative sensitivity of the echovirus type 25 JV-4 prototype strain and two recent isolates to glutaraldehyde at low concentrations. Appl Environ Microbiol. 1994 Feb;60(2):387–392. doi: 10.1128/aem.60.2.387-392.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crainic R., Couillin P., Blondel B., Cabau N., Boué A., Horodniceanu F. Natural variation of poliovirus neutralization epitopes. Infect Immun. 1983 Sep;41(3):1217–1225. doi: 10.1128/iai.41.3.1217-1225.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hogle J. M., Chow M., Filman D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985 Sep 27;229(4720):1358–1365. doi: 10.1126/science.2994218. [DOI] [PubMed] [Google Scholar]
  9. Huovilainen A., Kinnunen L., Pöyry T., Laaksonen L., Roivainen M., Hovi T. Poliovirus type 3/Saukett: antigenic and structural correlates of sequence variation in the capsid proteins. Virology. 1994 Feb 15;199(1):228–232. doi: 10.1006/viro.1994.1116. [DOI] [PubMed] [Google Scholar]
  10. Kew O. M., Nottay B. K., Hatch M. H., Nakano J. H., Obijeski J. F. Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. J Gen Virol. 1981 Oct;56(Pt 2):337–347. doi: 10.1099/0022-1317-56-2-337. [DOI] [PubMed] [Google Scholar]
  11. Kirkwood C. D., Kennett M. L., Schnagl R. D. Neutralization kinetic analysis showed that strains of echovirus types 7, 11 and 17, unlike those of echovirus type 30, varied antigenically over time in Melbourne, Australia. Acta Virol. 1988 May;32(3):267–271. [PubMed] [Google Scholar]
  12. Korn A. H., Feairheller S. H., Filachione E. M. Glutaraldehyde: nature of the reagent. J Mol Biol. 1972 Apr 14;65(3):525–529. doi: 10.1016/0022-2836(72)90206-9. [DOI] [PubMed] [Google Scholar]
  13. LWOFF A. Factors influencing the evolution of viral diseases at the cellular level and in the organism. Bacteriol Rev. 1959 Sep;23(3):109–124. doi: 10.1128/br.23.3.109-124.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lipskaya GYu, Chervonskaya E. A., Belova G. I., Maslova S. V., Kutateladze T. N., Drozdov S. G., Mulders M., Pallansch M. A., Kew O. M., Agol V. I. Geographical genotypes (geotypes) of poliovirus case isolates from the former Soviet Union: relatedness to other known poliovirus genotypes. J Gen Virol. 1995 Jul;76(Pt 7):1687–1699. doi: 10.1099/0022-1317-76-7-1687. [DOI] [PubMed] [Google Scholar]
  15. Minor P. D. Antigenic structure of picornaviruses. Curr Top Microbiol Immunol. 1990;161:121–154. doi: 10.1007/978-3-642-75602-3_5. [DOI] [PubMed] [Google Scholar]
  16. Minor P. D., John A., Ferguson M., Icenogle J. P. Antigenic and molecular evolution of the vaccine strain of type 3 poliovirus during the period of excretion by a primary vaccinee. J Gen Virol. 1986 Apr;67(Pt 4):693–706. doi: 10.1099/0022-1317-67-4-693. [DOI] [PubMed] [Google Scholar]
  17. Minor P. D., Schild G. C., Ferguson M., Mackay A., Magrath D. I., John A., Yates J. P., Spitz M. Genetic and antigenic variation in type 3 polioviruses: characterization of strains by monoclonal antibodies and T1 oligonucleotide mapping. J Gen Virol. 1982 Aug;61(Pt 2):167–176. doi: 10.1099/0022-1317-61-2-167. [DOI] [PubMed] [Google Scholar]
  18. O'Neil K. M., Pallansch M. A., Winkelstein J. A., Lock T. M., Modlin J. F. Chronic group A coxsackievirus infection in agammaglobulinemia: demonstration of genomic variation of serotypically identical isolates persistently excreted by the same patient. J Infect Dis. 1988 Jan;157(1):183–186. doi: 10.1093/infdis/157.1.183. [DOI] [PubMed] [Google Scholar]
  19. Page G. S., Mosser A. G., Hogle J. M., Filman D. J., Rueckert R. R., Chow M. Three-dimensional structure of poliovirus serotype 1 neutralizing determinants. J Virol. 1988 May;62(5):1781–1794. doi: 10.1128/jvi.62.5.1781-1794.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peigue-Lafeuille H., Fuchs F., Gharabaghi F., Chambon M., Aymard M. Impact on routine diagnosis of echovirus infections of intratypic differentiation and antigenic variation in echovirus type 25 studied by using monoclonal antibodies. J Clin Microbiol. 1990 Oct;28(10):2291–2296. doi: 10.1128/jcm.28.10.2291-2296.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Prabhakar B. S., Haspel M. V., McClintock P. R., Notkins A. L. High frequency of antigenic variants among naturally occurring human Coxsackie B4 virus isolates identified by monoclonal antibodies. Nature. 1982 Nov 25;300(5890):374–376. doi: 10.1038/300374a0. [DOI] [PubMed] [Google Scholar]
  22. Toyoda H., Kohara M., Kataoka Y., Suganuma T., Omata T., Imura N., Nomoto A. Complete nucleotide sequences of all three poliovirus serotype genomes. Implication for genetic relationship, gene function and antigenic determinants. J Mol Biol. 1984 Apr 25;174(4):561–585. doi: 10.1016/0022-2836(84)90084-6. [DOI] [PubMed] [Google Scholar]
  23. Vanden Bossche G., Wustmann U., Krietemeyer S. Ozone disinfection dynamics of enteric viruses provide evidence that infectious titer reduction is triggered by alterations to viral colloidal properties. Microbiol Res. 1994 Nov;149(4):351–370. doi: 10.1016/S0944-5013(11)80083-2. [DOI] [PubMed] [Google Scholar]
  24. Young D. C., Sharp D. G. Virion conformational forms and the complex inactivation kinetics of echovirus by chlorine in water. Appl Environ Microbiol. 1985 Feb;49(2):359–364. doi: 10.1128/aem.49.2.359-364.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES