Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3218–3224. doi: 10.1128/aem.63.8.3218-3224.1997

The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs.

I R McDonald 1, J C Murrell 1
PMCID: PMC168619  PMID: 9251208

Abstract

The methanol dehydrogenase gene mxaF, encoding the large subunit of the enzyme, was amplified from the DNA of a number of representative methanotrophs, methyletrophs, and environmental samples by PCR using primers designed from regions of conserved amino acid sequence identified by comparison of three known sequences of the large subunit of methanol dehydrogenase. The resulting 550-bp PCR products were cloned and sequenced. Analysis of the predicted amino acid sequences corresponding to these mxaF genes revealed strong sequence conservation. Of the 172 amino acid residues, 47% were conserved among all 22 sequences obtained in this study. Phylogenetic analysis of these MxaF sequences showed that those from type I and type II methanotrophs form two distinct clusters and are separate from MxaF sequences of other gram-negative methylotrophs. MxaF sequences retrieved by PCR from DNA isolated from a blanket bog peat core sample formed a distinct phylogenetic cluster within the MxaF sequences of type II methanotrophs and may originate from a novel group of acidophilic methanotrophs which have yet to be cultured from this environment.

Full Text

The Full Text of this article is available as a PDF (263.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson D. J., Morris C. J., Nunn D. N., Anthony C., Lidstrom M. E. Nucleotide sequence of the Methylobacterium extorquens AM1 moxF and moxJ genes involved in methanol oxidation. Gene. 1990 May 31;90(1):173–176. doi: 10.1016/0378-1119(90)90457-3. [DOI] [PubMed] [Google Scholar]
  3. Anthony C., Ghosh M., Blake C. C. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone. Biochem J. 1994 Dec 15;304(Pt 3):665–674. doi: 10.1042/bj3040665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blake C. C., Ghosh M., Harlos K., Avezoux A., Anthony C. The active site of methanol dehydrogenase contains a disulphide bridge between adjacent cysteine residues. Nat Struct Biol. 1994 Feb;1(2):102–105. doi: 10.1038/nsb0294-102. [DOI] [PubMed] [Google Scholar]
  5. Bruce K. D., Hiorns W. D., Hobman J. L., Osborn A. M., Strike P., Ritchie D. A. Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction. Appl Environ Microbiol. 1992 Oct;58(10):3413–3416. doi: 10.1128/aem.58.10.3413-3416.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brusseau G. A., Bulygina E. S., Hanson R. S. Phylogenetic analysis and development of probes for differentiating methylotrophic bacteria. Appl Environ Microbiol. 1994 Feb;60(2):626–636. doi: 10.1128/aem.60.2.626-636.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev. 1996 Dec;60(4):609–640. doi: 10.1128/mr.60.4.609-640.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Felsenstein J. Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet. 1988;22:521–565. doi: 10.1146/annurev.ge.22.120188.002513. [DOI] [PubMed] [Google Scholar]
  9. Ghosh M., Anthony C., Harlos K., Goodwin M. G., Blake C. The refined structure of the quinoprotein methanol dehydrogenase from Methylobacterium extorquens at 1.94 A. Structure. 1995 Feb 15;3(2):177–187. doi: 10.1016/s0969-2126(01)00148-4. [DOI] [PubMed] [Google Scholar]
  10. Goodwin P. M., Anthony C. The biosynthesis of periplasmic electron transport proteins in methylotrophic bacteria. Microbiology. 1995 May;141(Pt 5):1051–1064. doi: 10.1099/13500872-141-5-1051. [DOI] [PubMed] [Google Scholar]
  11. Hanson R. S., Hanson T. E. Methanotrophic bacteria. Microbiol Rev. 1996 Jun;60(2):439–471. doi: 10.1128/mr.60.2.439-471.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harms N., de Vries G. E., Maurer K., Hoogendijk J., Stouthamer A. H. Isolation and nucleotide sequence of the methanol dehydrogenase structural gene from Paracoccus denitrificans. J Bacteriol. 1987 Sep;169(9):3969–3975. doi: 10.1128/jb.169.9.3969-3975.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holmes A. J., Costello A., Lidstrom M. E., Murrell J. C. Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett. 1995 Oct 15;132(3):203–208. doi: 10.1016/0378-1097(95)00311-r. [DOI] [PubMed] [Google Scholar]
  14. Holmes A. J., Kelly D. P., Baker S. C., Thompson A. S., De Marco P., Kenna E. M., Murrell J. C. Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol. 1997 Jan;167(1):46–53. doi: 10.1007/s002030050415. [DOI] [PubMed] [Google Scholar]
  15. Holmes A. J., Owens N. J., Murrell J. C. Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology. 1995 Aug;141(Pt 8):1947–1955. doi: 10.1099/13500872-141-8-1947. [DOI] [PubMed] [Google Scholar]
  16. Lidstrom M. E., Anthony C., Biville F., Gasser F., Goodwin P., Hanson R. S., Harms N. New unified nomenclature for genes involved in the oxidation of methanol in gram-negative bacteria. FEMS Microbiol Lett. 1994 Mar 15;117(1):103–106. doi: 10.1111/j.1574-6968.1994.tb06749.x. [DOI] [PubMed] [Google Scholar]
  17. Machlin S. M., Hanson R. S. Nucleotide sequence and transcriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene. J Bacteriol. 1988 Oct;170(10):4739–4747. doi: 10.1128/jb.170.10.4739-4747.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McDonald I. R., Kenna E. M., Murrell J. C. Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol. 1995 Jan;61(1):116–121. doi: 10.1128/aem.61.1.116-121.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moyer C. L., Dobbs F. C., Karl D. M. Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microbiol. 1994 Mar;60(3):871–879. doi: 10.1128/aem.60.3.871-879.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murrell J. C. Molecular genetics of methane oxidation. Biodegradation. 1994 Dec;5(3-4):145–159. doi: 10.1007/BF00696456. [DOI] [PubMed] [Google Scholar]
  21. Saunders S. E., Burke J. F. Rapid isolation of miniprep DNA for double strand sequencing. Nucleic Acids Res. 1990 Aug 25;18(16):4948–4948. doi: 10.1093/nar/18.16.4948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Selenska S., Klingmüller W. DNA recovery and direct detection of Tn5 sequences from soil. Lett Appl Microbiol. 1991 Jul;13(1):21–24. doi: 10.1111/j.1472-765x.1991.tb00559.x. [DOI] [PubMed] [Google Scholar]
  23. Stein J. L., Marsh T. L., Wu K. Y., Shizuya H., DeLong E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol. 1996 Feb;178(3):591–599. doi: 10.1128/jb.178.3.591-599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stephens R. L., Haygood M. G., Lidstrom M. E. Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning of moxF genes from Methylococcus capsulatus bath and Methylomonas albus BG8. J Bacteriol. 1988 May;170(5):2063–2069. doi: 10.1128/jb.170.5.2063-2069.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsuji K., Tsien H. C., Hanson R. S., DePalma S. R., Scholtz R., LaRoche S. 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol. 1990 Jan;136(1):1–10. doi: 10.1099/00221287-136-1-1. [DOI] [PubMed] [Google Scholar]
  26. Waechter-Brulla D., DiSpirito A. A., Chistoserdova L. V., Lidstrom M. E. Methanol oxidation genes in the marine methanotroph Methylomonas sp. strain A4. J Bacteriol. 1993 Jun;175(12):3767–3775. doi: 10.1128/jb.175.12.3767-3775.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Whittenbury R., Phillips K. C., Wilkinson J. F. Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol. 1970 May;61(2):205–218. doi: 10.1099/00221287-61-2-205. [DOI] [PubMed] [Google Scholar]
  28. Williamson V. M., Paquin C. E. Homology of Saccharomyces cerevisiae ADH4 to an iron-activated alcohol dehydrogenase from Zymomonas mobilis. Mol Gen Genet. 1987 Sep;209(2):374–381. doi: 10.1007/BF00329668. [DOI] [PubMed] [Google Scholar]
  29. Xia Z., Dai W., Zhang Y., White S. A., Boyd G. D., Mathews F. S. Determination of the gene sequence and the three-dimensional structure at 2.4 angstroms resolution of methanol dehydrogenase from Methylophilus W3A1. J Mol Biol. 1996 Jun 14;259(3):480–501. doi: 10.1006/jmbi.1996.0334. [DOI] [PubMed] [Google Scholar]
  30. de Vries G. E., Arfman N., Terpstra P., Dijkhuizen L. Cloning, expression, and sequence analysis of the Bacillus methanolicus C1 methanol dehydrogenase gene. J Bacteriol. 1992 Aug;174(16):5346–5353. doi: 10.1128/jb.174.16.5346-5353.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES