Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3225–3232. doi: 10.1128/aem.63.8.3225-3232.1997

Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

R Pagán 1, S Condón 1, F J Sala 1
PMCID: PMC168620  PMID: 9251209

Abstract

The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage.

Full Text

The Full Text of this article is available as a PDF (259.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beuchat L. R., Worthington R. E. Relationships between heat resistance and phospholipid fatty acid composition of Vibrio parahaemolyticus. Appl Environ Microbiol. 1976 Mar;31(3):389–394. doi: 10.1128/aem.31.3.389-394.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bunning V. K., Crawford R. G., Tierney J. T., Peeler J. T. Thermotolerance of Listeria monocytogenes and Salmonella typhimurium after sublethal heat shock. Appl Environ Microbiol. 1990 Oct;56(10):3216–3219. doi: 10.1128/aem.56.10.3216-3219.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cerf O. Tailing of survival curves of bacterial spores. J Appl Bacteriol. 1977 Feb;42(1):1–19. doi: 10.1111/j.1365-2672.1977.tb00665.x. [DOI] [PubMed] [Google Scholar]
  4. Doyle M. P., Glass K. A., Beery J. T., Garcia G. A., Pollard D. J., Schultz R. D. Survival of Listeria monocytogenes in milk during high-temperature, short-time pasteurization. Appl Environ Microbiol. 1987 Jul;53(7):1433–1438. doi: 10.1128/aem.53.7.1433-1438.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Farber J. M., Brown B. E. Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat. Appl Environ Microbiol. 1990 Jun;56(6):1584–1587. doi: 10.1128/aem.56.6.1584-1587.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farber J. M., Peterkin P. I. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev. 1991 Sep;55(3):476–511. doi: 10.1128/mr.55.3.476-511.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fernández Garayzábal J. F., Domínguez Rodríguez L., Vázquez Boland J. A., Blanco Cancelo J. L., Suárez Fernández G. Listeria monocytogenes dans le lait pasteurisé. Can J Microbiol. 1986 Feb;32(2):149–150. [PubMed] [Google Scholar]
  8. Fleming D. W., Cochi S. L., MacDonald K. L., Brondum J., Hayes P. S., Plikaytis B. D., Holmes M. B., Audurier A., Broome C. V., Reingold A. L. Pasteurized milk as a vehicle of infection in an outbreak of listeriosis. N Engl J Med. 1985 Feb 14;312(7):404–407. doi: 10.1056/NEJM198502143120704. [DOI] [PubMed] [Google Scholar]
  9. Jørgensen F., Panaretou B., Stephens P. J., Knøchel S. Effect of pre- and post-heat shock temperature on the persistence of thermotolerance and heat shock-induced proteins in Listeria monocytogenes. J Appl Bacteriol. 1996 Feb;80(2):216–224. doi: 10.1111/j.1365-2672.1996.tb03213.x. [DOI] [PubMed] [Google Scholar]
  10. Katsui N., Tsuchido T., Takano M., Shibasaki I. Effect of preincubation temperature on the heat resistance of Escherichia coli having different fatty acid compositions. J Gen Microbiol. 1981 Feb;122(2):357–361. doi: 10.1099/00221287-122-2-357. [DOI] [PubMed] [Google Scholar]
  11. Knabel S. J., Walker H. W., Hartman P. A., Mendonca A. F. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization. Appl Environ Microbiol. 1990 Feb;56(2):370–376. doi: 10.1128/aem.56.2.370-376.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  13. Mackey B. M., Derrick C. M. Elevation of the heat resistance of Salmonella typhimurium by sublethal heat shock. J Appl Bacteriol. 1986 Nov;61(5):389–393. doi: 10.1111/j.1365-2672.1986.tb04301.x. [DOI] [PubMed] [Google Scholar]
  14. Mackey B. M., Derrick C. Heat shock protein synthesis and thermotolerance in Salmonella typhimurium. J Appl Bacteriol. 1990 Sep;69(3):373–383. doi: 10.1111/j.1365-2672.1990.tb01527.x. [DOI] [PubMed] [Google Scholar]
  15. Neidhardt F. C., VanBogelen R. A., Vaughn V. The genetics and regulation of heat-shock proteins. Annu Rev Genet. 1984;18:295–329. doi: 10.1146/annurev.ge.18.120184.001455. [DOI] [PubMed] [Google Scholar]
  16. Ng H., Bayne H. G., Garibaldi J. A. Heat resistance of Salmonella: the uniqueness of Salmonella senftenberg 775W. Appl Microbiol. 1969 Jan;17(1):78–82. doi: 10.1128/am.17.1.78-82.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Parsell D. A., Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet. 1993;27:437–496. doi: 10.1146/annurev.ge.27.120193.002253. [DOI] [PubMed] [Google Scholar]
  18. Püttmann M., Ade N., Hof H. Dependence of fatty acid composition of Listeria spp. on growth temperature. Res Microbiol. 1993 May;144(4):279–283. doi: 10.1016/0923-2508(93)90012-q. [DOI] [PubMed] [Google Scholar]
  19. Schlesinger M. J. Heat shock proteins: the search for functions. J Cell Biol. 1986 Aug;103(2):321–325. doi: 10.1083/jcb.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sokolovic Z., Goebel W. Synthesis of listeriolysin in Listeria monocytogenes under heat shock conditions. Infect Immun. 1989 Jan;57(1):295–298. doi: 10.1128/iai.57.1.295-298.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stephens P. J., Cole M. B., Jones M. V. Effect of heating rate on the thermal inactivation of Listeria monocytogenes. J Appl Bacteriol. 1994 Dec;77(6):702–708. doi: 10.1111/j.1365-2672.1994.tb02822.x. [DOI] [PubMed] [Google Scholar]
  22. WHITE H. R. The heat resistance of Streptococcus faecalis. J Gen Microbiol. 1953 Feb;8(1):27–37. doi: 10.1099/00221287-8-1-27. [DOI] [PubMed] [Google Scholar]
  23. Yamamori T., Yura T. Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1982 Feb;79(3):860–864. doi: 10.1073/pnas.79.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES