Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Aug;63(8):3333–3335. doi: 10.1128/aem.63.8.3333-3335.1997

Reductive dehalogenation of halocarboxylic acids by the phototrophic genera Rhodospirillum and Rhodopseudomonas.

J E McGrath 1, C G Harfoot 1
PMCID: PMC168637  PMID: 9251226

Abstract

Type strains of the purple nonsulfur species Rhodospirillum rubrum, Rhodospirillum photometricum, and Rhodopseudomonas palustris grew phototrophically on a number of two- and three-carbon halocarboxylic acids in the presence of CO2, by reductive dehalogenation and assimilation of the resulting acid. Strains of each of these species were able to grow on chloroacetic, 2-bromopropionic, 2-chloropropionic, and 3-chloropropionic acids at a concentration of 2 mM. Only R. palustris DSM 123 was able to grow on bromoacetic acid and then only at a reduced concentration of 1 mM. R. palustris ATCC 33872 (formerly R. rutila) was unable to grow on any of the substrates tested. The ability of these organisms to utilize halocarboxylic acids indicates that they may have a significant role to play in the removal of these environmental pollutants from illuminated anaerobic habitats such as lakes, waste lagoons, sediments of ditches and ponds, mud, and moist soil.

Full Text

The Full Text of this article is available as a PDF (157.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hardman D. J., Gowland P. C., Slater J. H. Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl Environ Microbiol. 1986 Jan;51(1):44–51. doi: 10.1128/aem.51.1.44-51.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harwood C. S., Gibson J. Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl Environ Microbiol. 1988 Mar;54(3):712–717. doi: 10.1128/aem.54.3.712-717.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Kamal V. S., Wyndham R. C. Anaerobic phototrophic metabolism of 3-chlorobenzoate by Rhodopseudomonas palustris WS17. Appl Environ Microbiol. 1990 Dec;56(12):3871–3873. doi: 10.1128/aem.56.12.3871-3873.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Mohn W. W., Tiedje J. M. Microbial reductive dehalogenation. Microbiol Rev. 1992 Sep;56(3):482–507. doi: 10.1128/mr.56.3.482-507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Omori T., Alexander M. Bacterial and spontaneous dehalogenation of organic compounds. Appl Environ Microbiol. 1978 Mar;35(3):512–516. doi: 10.1128/aem.35.3.512-516.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Wright G. E., Madigan M. T. Photocatabolism of Aromatic Compounds by the Phototrophic Purple Bacterium Rhodomicrobium vannielii. Appl Environ Microbiol. 1991 Jul;57(7):2069–2073. doi: 10.1128/aem.57.7.2069-2073.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. van Niel C. B. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944 Mar;8(1):1–118. doi: 10.1128/br.8.1.1-118.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. van der Woude B. J., de Boer M., van der Put N. M., van der Geld F. M., Prins R. A., Gottschal J. C. Anaerobic degradation of halogenated benzoic acids by photoheterotrophic bacteria. FEMS Microbiol Lett. 1994 Jun 1;119(1-2):199–207. doi: 10.1111/j.1574-6968.1994.tb06889.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES