Abstract
We examined the degradation of biphenyl and the commercial polychlorinated biphenyl (PCB) mixture Aroclor 1221 by indigenous Arctic soil microorganisms to assess both the response of the soil microflora to PCB pollution and the potential of the microflora for bioremediation. In soil slurries, Arctic soil microflora and temperate-soil microflora had similar potentials to mineralize [14C]biphenyl. Mineralization began sooner and was more extensive in slurries of PCB-contaminated Arctic soils than in slurries of uncontaminated Arctic soils. The maximum mineralization rates at 30 and 7 degrees C were typically 1.2 to 1.4 and 0.52 to 1.0 mg of biphenyl g of dry soil-1 day-1, respectively. Slurries of PCB-contaminated Arctic soils degraded Aroclor 1221 more extensively at 30 degrees C (71 to 76% removal) than at 7 degrees C (14 to 40% removal). We isolated from Arctic soils organisms that were capable of psychrotolerant (growing at 7 to 30 degrees C) or psychrophilic (growing at 7 to 15 degrees C) growth on biphenyl. Two psychrotolerant isolates extensively degraded Aroclor 1221 at 7 degrees C (54 to 60% removal). The soil microflora and psychrotolerant isolates degraded all mono-, most di-, and some trichlorobiphenyl congeners. The results suggest that PCB pollution selected for biphenyl-mineralizing microorganisms in Arctic soils. While low temperatures severely limited Aroclor 1221 removal in slurries of Arctic soils, results with pure cultures suggest that more effective PCB biodegradation is possible under appropriate conditions.
Full Text
The Full Text of this article is available as a PDF (334.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albro P. W., Haseman J. K., Clemmer T. A., Corbett B. J. Identification of the individual polychlorinated biphenyls in a mixture by gas-liquid chromatography. J Chromatogr. 1977 Jun 1;136(1):147–153. [PubMed] [Google Scholar]
- Bedard D. L., Haberl M. L., May R. J., Brennan M. J. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl Environ Microbiol. 1987 May;53(5):1103–1112. doi: 10.1128/aem.53.5.1103-1112.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bedard D. L., Unterman R., Bopp L. H., Brennan M. J., Haberl M. L., Johnson C. Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl Environ Microbiol. 1986 Apr;51(4):761–768. doi: 10.1128/aem.51.4.761-768.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bright D. A., Dushenko W. T., Grundy S. L., Reimer K. J. Effects of local and distant contaminant sources: polychlorinated biphenyls and other organochlorines in bottom-dwelling animals from an Arctic estuary. Sci Total Environ. 1995 Jan 15;160-161:265–283. doi: 10.1016/0048-9697(95)04362-5. [DOI] [PubMed] [Google Scholar]
- Dushenko W. T., Grundy S. L., Reimer K. J. Vascular plants as sensitive indicators of lead and PCB transport from local sources in the Canadian Arctic. Sci Total Environ. 1996 Sep 20;188(1):29–38. doi: 10.1016/0048-9697(96)05154-6. [DOI] [PubMed] [Google Scholar]
- Furukawa K., Tonomura K., Kamibayashi A. Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Appl Environ Microbiol. 1978 Feb;35(2):223–227. doi: 10.1128/aem.35.2.223-227.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gounot A. M. Bacterial life at low temperature: physiological aspects and biotechnological implications. J Appl Bacteriol. 1991 Nov;71(5):386–397. doi: 10.1111/j.1365-2672.1991.tb03806.x. [DOI] [PubMed] [Google Scholar]
- Harder W., Veldkamp H. Competition of marine psychrophilic bacteria at low temperatures. Antonie Van Leeuwenhoek. 1971;37(1):51–63. doi: 10.1007/BF02218466. [DOI] [PubMed] [Google Scholar]
- Harkness M. R., McDermott J. B., Abramowicz D. A., Salvo J. J., Flanagan W. P., Stephens M. L., Mondello F. J., May R. J., Lobos J. H., Carroll K. M. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science. 1993 Jan 22;259(5094):503–507. doi: 10.1126/science.8424172. [DOI] [PubMed] [Google Scholar]
- Kolenc R. J., Inniss W. E., Glick B. R., Robinson C. W., Mayfield C. I. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl Environ Microbiol. 1988 Mar;54(3):638–641. doi: 10.1128/aem.54.3.638-641.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohn W. W., Tiedje J. M. Microbial reductive dehalogenation. Microbiol Rev. 1992 Sep;56(3):482–507. doi: 10.1128/mr.56.3.482-507.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swannell R. P., Lee K., McDonagh M. Field evaluations of marine oil spill bioremediation. Microbiol Rev. 1996 Jun;60(2):342–365. doi: 10.1128/mr.60.2.342-365.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whyte L. G., Greer C. W., Inniss W. E. Assessment of the biodegradation potential of psychrotrophic microorganisms. Can J Microbiol. 1996 Feb;42(2):99–106. doi: 10.1139/m96-016. [DOI] [PubMed] [Google Scholar]