Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1991 Dec;49(6):1145–1154.

Role of apolipoprotein E and B gene variation in determining response of lipid, lipoprotein, and apolipoprotein levels to increased dietary cholesterol.

E Boerwinkle 1, S A Brown 1, K Rohrbach 1, A M Gotto Jr 1, W Patsch 1
PMCID: PMC1686445  PMID: 1746549

Abstract

A large segment of the population is modifying its dietary cholesterol intake to achieve a healthier life-style. However, all individuals do not respond equally. We have investigated the effects that that two physiologically important polymorphisms in the apolipoprotein (apo) E and B genes have on the responses of plasma lipid, lipoprotein, and apolipoprotein levels to a high-cholesterol diet. Over a 6-wk period, individuals were prescribed two diets, one consisting of 300 mg dietary cholesterol/d for 3 wk and one consisting of 1,700 mg dietary cholesterol/d for 3 wk. Total cholesterol, low-density-lipoprotein cholesterol (LDL-C), and apo B levels were significantly increased on the high-cholesterol diet. Average total cholesterol (numbers in parentheses are SDs) went from 167.6 (23.4) mg/dl on the low-cholesterol diet to 190.8 (36.2) mg/dl on the high-cholesterol diet; LDL-C went from 99.9 (24.8) mg/dl to 119.2 (33.4) mg/dl, and apo B went from 74.9 (24.5) mg/dl to 86.8 (29.5) mg/dl. In 71 individuals, the frequencies of the apo epsilon 2, epsilon 3, and epsilon 4 alleles were .09, .84, and .07, respectively. The frequency of the longer, apo B signal peptide allele (5'beta SP27) was .68. Apo epsilon 2/3 individuals had significantly lower LDL-C levels than did epsilon 3/3 homozygotes, on both the low-cholesterol diet (LDL-C lower by 21 mg/dl) and the high-cholesterol diet (LDL-C lower by 27 mg/dl). Average triglyceride levels were significantly different among apo B signal peptide genotypes, with the 5'beta SP27/37 homozygotes having the lowest levels (70 mg/dl). When individuals were switched from the low-cholesterol diet to the high-cholesterol diet, in no case were the average responses in lipid levels significantly different among apo E or B genotypes. Therefore, these gene loci do not have a major effect on the response of lipid levels to increased dietary cholesterol.

Full text

PDF
1145

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baecke J. A., Burema J., Frijters J. E. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982 Nov;36(5):936–942. doi: 10.1093/ajcn/36.5.936. [DOI] [PubMed] [Google Scholar]
  2. Boerwinkle E., Chan L. A three codon insertion/deletion polymorphism in the signal peptide region of the human apolipoprotein B (APOB) gene directly typed by the polymerase chain reaction. Nucleic Acids Res. 1989 May 25;17(10):4003–4003. doi: 10.1093/nar/17.10.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boerwinkle E., Utermann G. Simultaneous effects of the apolipoprotein E polymorphism on apolipoprotein E, apolipoprotein B, and cholesterol metabolism. Am J Hum Genet. 1988 Jan;42(1):104–112. [PMC free article] [PubMed] [Google Scholar]
  4. Brown S. A., Epps D. F., Dunn J. K., Sharrett A. R., Patsch J. R., Gotto A. M., Jr, Patsch W. Effect of blood collection and processing on radioimmunoassay results for apolipoprotein B in plasma. Clin Chem. 1990 Sep;36(9):1662–1666. [PubMed] [Google Scholar]
  5. Brown S. A., Rhodes C. E., Dunn K., Gotto A. M., Jr, Patsch W. Effect of blood collection and processing on radioimmunoassay results for apolipoprotein A-I in plasma. Clin Chem. 1988 May;34(5):920–924. [PubMed] [Google Scholar]
  6. Clarkson T. B., Lehner N. D., Wagner W. D., St Clair R. W., Bond M. G., Bullock B. C. A study of atherosclerosis regression in Macaca mulatta. I. Design of experiment and lesion induction. Exp Mol Pathol. 1979 Jun;30(3):360–385. doi: 10.1016/0014-4800(79)90090-x. [DOI] [PubMed] [Google Scholar]
  7. Clifton P. M., Kestin M., Abbey M., Drysdale M., Nestel P. J. Relationship between sensitivity to dietary fat and dietary cholesterol. Arteriosclerosis. 1990 May-Jun;10(3):394–401. doi: 10.1161/01.atv.10.3.394. [DOI] [PubMed] [Google Scholar]
  8. Ehnholm C., Huttunen J. K., Pietinen P., Leino U., Mutanen M., Kostiainen E., Pikkarainen J., Dougherty R., Iacono J., Puska P. Effect of diet on serum lipoproteins in a population with a high risk of coronary heart disease. N Engl J Med. 1982 Sep 30;307(14):850–855. doi: 10.1056/NEJM198209303071403. [DOI] [PubMed] [Google Scholar]
  9. Emi M., Wu L. L., Robertson M. A., Myers R. L., Hegele R. A., Williams R. R., White R., Lalouel J. M. Genotyping and sequence analysis of apolipoprotein E isoforms. Genomics. 1988 Nov;3(4):373–379. doi: 10.1016/0888-7543(88)90130-9. [DOI] [PubMed] [Google Scholar]
  10. Friedewald W. T., Levy R. I., Fredrickson D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972 Jun;18(6):499–502. [PubMed] [Google Scholar]
  11. Hixson J. E., Vernier D. T. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res. 1990 Mar;31(3):545–548. [PubMed] [Google Scholar]
  12. Kannel W. B., Castelli W. P., Gordon T., McNamara P. M. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. The Framingham study. Ann Intern Med. 1971 Jan;74(1):1–12. doi: 10.7326/0003-4819-74-1-1. [DOI] [PubMed] [Google Scholar]
  13. Katan M. B., Beynen A. C., de Vries J. H., Nobels A. Existence of consistent hypo- and hyperresponders to dietary cholesterol in man. Am J Epidemiol. 1986 Feb;123(2):221–234. doi: 10.1093/oxfordjournals.aje.a114231. [DOI] [PubMed] [Google Scholar]
  14. Kesäniemi Y. A., Ehnholm C., Miettinen T. A. Intestinal cholesterol absorption efficiency in man is related to apoprotein E phenotype. J Clin Invest. 1987 Aug;80(2):578–581. doi: 10.1172/JCI113107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  16. Nägele U., Hägele E. O., Sauer G., Wiedemann E., Lehmann P., Wahlefeld A. W., Gruber W. Reagent for the enzymatic determination of serum total triglycerides with improved lipolytic efficiency. J Clin Chem Clin Biochem. 1984 Feb;22(2):165–174. doi: 10.1515/cclm.1984.22.2.165. [DOI] [PubMed] [Google Scholar]
  17. Patsch W., Brown S. A., Morrisett J. D., Gotto A. M., Jr, Patsch J. R. A dual-precipitation method evaluated for measurement of cholesterol in high-density lipoprotein subfractions HDL2 and HDL3 in human plasma. Clin Chem. 1989 Feb;35(2):265–270. [PubMed] [Google Scholar]
  18. Randall L. L., Hardy S. J. Unity in function in the absence of consensus in sequence: role of leader peptides in export. Science. 1989 Mar 3;243(4895):1156–1159. doi: 10.1126/science.2646712. [DOI] [PubMed] [Google Scholar]
  19. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  20. Siedel J., Hägele E. O., Ziegenhorn J., Wahlefeld A. W. Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clin Chem. 1983 Jun;29(6):1075–1080. [PubMed] [Google Scholar]
  21. Tikkanen M. J., Huttunen J. K., Ehnholm C., Pietinen P. Apolipoprotein E4 homozygosity predisposes to serum cholesterol elevation during high fat diet. Arteriosclerosis. 1990 Mar-Apr;10(2):285–288. doi: 10.1161/01.atv.10.2.285. [DOI] [PubMed] [Google Scholar]
  22. Xu C. F., Boerwinkle E., Tikkanen M. J., Huttunen J. K., Humphries S. E., Talmud P. J. Genetic variation at the apolipoprotein gene loci contribute to response of plasma lipids to dietary change. Genet Epidemiol. 1990;7(4):261–275. doi: 10.1002/gepi.1370070405. [DOI] [PubMed] [Google Scholar]
  23. Xu C. F., Tikkanen M. J., Huttunen J. K., Pietinen P., Bütler R., Humphries S., Talmud P. Apolipoprotein B signal peptide insertion/deletion polymorphism is associated with Ag epitopes and involved in the determination of serum triglyceride levels. J Lipid Res. 1990 Jul;31(7):1255–1261. [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES