Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3399–3404. doi: 10.1128/aem.63.9.3399-3404.1997

Metabolic responses of pyruvate decarboxylase-negative Saccharomyces cerevisiae to glucose excess.

M T Flikweert 1, J P van Dijken 1, J T Pronk 1
PMCID: PMC168647  PMID: 9292991

Abstract

In Saccharomyces cerevisiae, oxidation of pyruvate to acetyl coenzyme A can occur via two routes. In pyruvate decarboxylase-negative (Pdc-) mutants, the pyruvate dehydrogenase complex is the sole functional link between glycolysis and the tricarboxylic acid (TCA) cycle. Such mutants therefore provide a useful experimental system with which to study regulation of the pyruvate dehydrogenase complex. In this study, a possible in vivo inactivation of the pyruvate dehydrogenase complex was investigated. When respiring, carbon-limited chemostat cultures of wild-type S. cerevisiae were pulsed with excess glucose, an immediate onset of respiro-fermentative metabolism occurred, accompanied by a strong increase of the glycolytic flux. When the same experiment was performed with an isogenic Pdc- mutant, only a small increase of the glycolytic flux was observed and pyruvate was the only major metabolite excreted. This finding supports the hypothesis that reoxidation of cytosolic NADH via pyruvate decarboxylase and alcohol dehydrogenase is a prerequisite for high glycolytic fluxes in S. cerevisiae. In Pdc- cultures, the specific rate of oxygen consumption increased by ca. 40% after a glucose pulse. Calculations showed that pyruvate excretion by the mutant was not due to a decrease of the pyruvate flux into the TCA cycle. We therefore conclude that rapid inactivation of the pyruvate dehydrogenase complex (e.g., by phosphorylation of its E1 alpha subunit, a mechanism demonstrated in many higher organisms) is not a relevant mechanism in the response of respiring S. cerevisiae cells to excess glucose. Consistently, pyruvate dehydrogenase activities in cell extracts did not exhibit a strong decrease after a glucose pulse.

Full Text

The Full Text of this article is available as a PDF (237.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Flikweert M. T., Van Der Zanden L., Janssen W. M., Steensma H. Y., Van Dijken J. P., Pronk J. T. Pyruvate decarboxylase: an indispensable enzyme for growth of Saccharomyces cerevisiae on glucose. Yeast. 1996 Mar 15;12(3):247–257. doi: 10.1002/(SICI)1097-0061(19960315)12:3%3C247::AID-YEA911%3E3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  2. Gancedo J. M. Carbon catabolite repression in yeast. Eur J Biochem. 1992 Jun 1;206(2):297–313. doi: 10.1111/j.1432-1033.1992.tb16928.x. [DOI] [PubMed] [Google Scholar]
  3. HOLZER H., GOEDDE H. W. Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem Z. 1957;329(3):175–191. [PubMed] [Google Scholar]
  4. Hensing M. C., Rouwenhorst R. J., Heijnen J. J., van Dijken J. P., Pronk J. T. Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek. 1995;67(3):261–279. doi: 10.1007/BF00873690. [DOI] [PubMed] [Google Scholar]
  5. James A. G., Cook R. M., West S. M., Lindsay J. G. The pyruvate dehydrogenase complex of Saccharomyces cerevisiae is regulated by phosphorylation. FEBS Lett. 1995 Oct 9;373(2):111–114. doi: 10.1016/0014-5793(95)01020-f. [DOI] [PubMed] [Google Scholar]
  6. Kispal G., Cseko J., Alkonyi I., Sandor A. Isolation and characterization of carnitine acetyltransferase from S. cerevisiae. Biochim Biophys Acta. 1991 Sep 11;1085(2):217–222. doi: 10.1016/0005-2760(91)90097-2. [DOI] [PubMed] [Google Scholar]
  7. Kresze G. B., Ronft H. Pyruvate dehydrogenase complex from baker's yeast. 1. Purification and some kinetic and regulatory properties. Eur J Biochem. 1981 Oct;119(3):573–579. doi: 10.1111/j.1432-1033.1981.tb05646.x. [DOI] [PubMed] [Google Scholar]
  8. Käppeli O. Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol. 1986;28:181–209. doi: 10.1016/s0065-2911(08)60239-8. [DOI] [PubMed] [Google Scholar]
  9. Mistry S. C., Priestman D. A., Kerbey A. L., Randle P. J. Evidence that rat liver pyruvate dehydrogenase kinase activator protein is a pyruvate dehydrogenase kinase. Biochem J. 1991 May 1;275(Pt 3):775–779. doi: 10.1042/bj2750775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nevoigt E., Stahl U. Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast. 1996 Oct;12(13):1331–1337. doi: 10.1002/(SICI)1097-0061(199610)12:13%3C1331::AID-YEA28%3E3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  11. Postma E., Verduyn C., Scheffers W. A., Van Dijken J. P. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989 Feb;55(2):468–477. doi: 10.1128/aem.55.2.468-477.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pronk J. T., Wenzel T. J., Luttik M. A., Klaassen C. C., Scheffers W. A., Steensma H. Y., van Dijken J. P. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae. Microbiology. 1994 Mar;140(Pt 3):601–610. doi: 10.1099/00221287-140-3-601. [DOI] [PubMed] [Google Scholar]
  13. Pronk J. T., Yde Steensma H., Van Dijken J. P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast. 1996 Dec;12(16):1607–1633. doi: 10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  14. Schmitt H. D., Zimmermann F. K. Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J Bacteriol. 1982 Sep;151(3):1146–1152. doi: 10.1128/jb.151.3.1146-1152.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Steensma H. Y., Holterman L., Dekker I., van Sluis C. A., Wenzel T. J. Molecular cloning of the gene for the E1 alpha subunit of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Eur J Biochem. 1990 Aug 17;191(3):769–774. doi: 10.1111/j.1432-1033.1990.tb19186.x. [DOI] [PubMed] [Google Scholar]
  16. Uhlinger D. J., Yang C. Y., Reed L. J. Phosphorylation-dephosphorylation of pyruvate dehydrogenase from bakers' yeast. Biochemistry. 1986 Sep 23;25(19):5673–5677. doi: 10.1021/bi00367a049. [DOI] [PubMed] [Google Scholar]
  17. Van Urk H., Mak P. R., Scheffers W. A., van Dijken J. P. Metabolic responses of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 upon transition from glucose limitation to glucose excess. Yeast. 1988 Dec;4(4):283–291. doi: 10.1002/yea.320040406. [DOI] [PubMed] [Google Scholar]
  18. Verduyn C. Physiology of yeasts in relation to biomass yields. Antonie Van Leeuwenhoek. 1991 Oct-Nov;60(3-4):325–353. doi: 10.1007/BF00430373. [DOI] [PubMed] [Google Scholar]
  19. Verduyn C., Postma E., Scheffers W. A., van Dijken J. P. Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol. 1990 Mar;136(3):395–403. doi: 10.1099/00221287-136-3-395. [DOI] [PubMed] [Google Scholar]
  20. Wenzel T. J., van den Berg M. A., Visser W., van den Berg J. A., Steensma H. Y. Characterization of Saccharomyces cerevisiae mutants lacking the E1 alpha subunit of the pyruvate dehydrogenase complex. Eur J Biochem. 1992 Oct 15;209(2):697–705. doi: 10.1111/j.1432-1033.1992.tb17338.x. [DOI] [PubMed] [Google Scholar]
  21. Weusthuis R. A., Visser W., Pronk J. T., Scheffers W. A., van Dijken J. P. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect. Microbiology. 1994 Apr;140(Pt 4):703–715. doi: 10.1099/00221287-140-4-703. [DOI] [PubMed] [Google Scholar]
  22. Yeaman S. J. The 2-oxo acid dehydrogenase complexes: recent advances. Biochem J. 1989 Feb 1;257(3):625–632. doi: 10.1042/bj2570625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. de Vries S., Marres C. A. The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim Biophys Acta. 1987;895(3):205–239. doi: 10.1016/s0304-4173(87)80003-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES