Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3451–3457. doi: 10.1128/aem.63.9.3451-3457.1997

Modifications of membrane phospholipid composition in nisin-resistant Listeria monocytogenes Scott A.

A Verheul 1, N J Russell 1, R Van'T Hof 1, F M Rombouts 1, T Abee 1
PMCID: PMC168652  PMID: 9292996

Abstract

A nisin-resistant (NISr) variant of Listeria monocytogenes Scott A was isolated by stepwise exposure to increasing concentrations of nisin in brain heart infusion (BHI) broth. The NISr strain was about 12 times more resistant to nisin than was the wild-type (WT) strain. Accordingly, higher nisin concentrations were required to dissipate both components of the proton motive force in the NISr strain than in the WT strain. Comparison of the membrane fatty acyl composition of the sensitive strain with that of its NISr derivative revealed no significant differences. From phospholipid head group composition analysis and phospholipid biosynthesis measurements during growth in the absence and presence of nisin, it could be inferred that the NISr strain produces relatively more phosphatidylglycerol (PG) and less diphosphatidylglycerol (DPG) than the parent strain does. Monolayer studies with pure lipid extracts from both strains showed that nisin interacted more efficiently with lipids derived from the WT strain than with those derived from the NISr strain, reflecting qualitative differences in nisin sensitivity. Involvement of the cell wall in acquisition of nisin resistance was excluded, since the WT and NISr strains showed a comparable sensitivity to lysozyme. Recently, it has been demonstrated that nisin penetrates more deeply into lipid monolayers of DPG than those of other lipids including PG, phosphatidylcholine, phosphatidylethanolamine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol (R.A. Demel, T. Peelen, R.J. Siezen, B. de Kruijff, and O.P. Kuipers, Eur. J.Biochem. 235:267-274, 1996). Collectively, the mechanism of nisin resistance in this L. monocytogenes NISr strain is attributed to a reduction in the DPG content of the cytoplasmic membrane.

Full Text

The Full Text of this article is available as a PDF (232.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T., Rombouts F. M., Hugenholtz J., Guihard G., Letellier L. Mode of Action of Nisin Z against Listeria monocytogenes Scott A Grown at High and Low Temperatures. Appl Environ Microbiol. 1994 Jun;60(6):1962–1968. doi: 10.1128/aem.60.6.1962-1968.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Breeuwer P., Drocourt J., Rombouts F. M., Abee T. A Novel Method for Continuous Determination of the Intracellular pH in Bacteria with the Internally Conjugated Fluorescent Probe 5 (and 6-)-Carboxyfluorescein Succinimidyl Ester. Appl Environ Microbiol. 1996 Jan;62(1):178–183. doi: 10.1128/aem.62.1.178-183.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruno M. E., Kaiser A., Montville T. J. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl Environ Microbiol. 1992 Jul;58(7):2255–2259. doi: 10.1128/aem.58.7.2255-2259.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daeschel M. A., Jung D. S., Watson B. T. Controlling Wine Malolactic Fermentation with Nisin and Nisin-Resistant Strains of Leuconostoc oenos. Appl Environ Microbiol. 1991 Feb;57(2):601–603. doi: 10.1128/aem.57.2.601-603.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies E. A., Adams M. R. Resistance of Listeria monocytogenes to the bacteriocin nisin. Int J Food Microbiol. 1994 Mar;21(4):341–347. doi: 10.1016/0168-1605(94)90064-7. [DOI] [PubMed] [Google Scholar]
  8. Davies E. A., Falahee M. B., Adams M. R. Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J Appl Bacteriol. 1996 Aug;81(2):139–146. doi: 10.1111/j.1365-2672.1996.tb04491.x. [DOI] [PubMed] [Google Scholar]
  9. Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
  10. Demel R. A. Monomolecular layers in the study of biomembranes. Subcell Biochem. 1994;23:83–120. doi: 10.1007/978-1-4615-1863-1_3. [DOI] [PubMed] [Google Scholar]
  11. Demel R. A., Peelen T., Siezen R. J., De Kruijff B., Kuipers O. P. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. Eur J Biochem. 1996 Jan 15;235(1-2):267–274. doi: 10.1111/j.1432-1033.1996.00267.x. [DOI] [PubMed] [Google Scholar]
  12. Driessen A. J., van den Hooven H. W., Kuiper W., van de Kamp M., Sahl H. G., Konings R. N., Konings W. N. Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry. 1995 Feb 7;34(5):1606–1614. doi: 10.1021/bi00005a017. [DOI] [PubMed] [Google Scholar]
  13. Filgueiras M. H., Op den Kamp J. A. Cardiolipin, a major phospholipid of Gram-positive bacteria that is not readily extractable. Biochim Biophys Acta. 1980 Nov 7;620(2):332–337. doi: 10.1016/0005-2760(80)90215-5. [DOI] [PubMed] [Google Scholar]
  14. Gao F. H., Abee T., Konings W. N. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ Microbiol. 1991 Aug;57(8):2164–2170. doi: 10.1128/aem.57.8.2164-2170.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Garcerá M. J., Elferink M. G., Driessen A. J., Konings W. N. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem. 1993 Mar 1;212(2):417–422. doi: 10.1111/j.1432-1033.1993.tb17677.x. [DOI] [PubMed] [Google Scholar]
  16. Giffard C. J., Ladha S., Mackie A. R., Clark D. C., Sanders D. Interaction of nisin with planar lipid bilayers monitored by fluorescence recovery after photobleaching. J Membr Biol. 1996 Jun;151(3):293–300. doi: 10.1007/s002329900079. [DOI] [PubMed] [Google Scholar]
  17. Huot E., Barrena-Gonzalez C., Petitdemange H. Comparative effectiveness of nisin and bacteriocin J46 at different pH values. Lett Appl Microbiol. 1996 Jan;22(1):76–79. doi: 10.1111/j.1472-765x.1996.tb01112.x. [DOI] [PubMed] [Google Scholar]
  18. Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Killian J. A., Koorengevel M. C., Bouwstra J. A., Gooris G., Dowhan W., de Kruijff B. Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim Biophys Acta. 1994 Jan 19;1189(2):225–232. doi: 10.1016/0005-2736(94)90069-8. [DOI] [PubMed] [Google Scholar]
  20. Kordel M., Schüller F., Sahl H. G. Interaction of the pore forming-peptide antibiotics Pep 5, nisin and subtilin with non-energized liposomes. FEBS Lett. 1989 Feb 13;244(1):99–102. doi: 10.1016/0014-5793(89)81171-8. [DOI] [PubMed] [Google Scholar]
  21. Kosaric N., Carroll K. K. Phospholipids of Listeria monocytogenes. Biochim Biophys Acta. 1971 Sep 1;239(3):428–442. doi: 10.1016/0005-2760(71)90035-x. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Liu W., Hansen J. N. Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Appl Environ Microbiol. 1990 Aug;56(8):2551–2558. doi: 10.1128/aem.56.8.2551-2558.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maisnier-Patin S., Richard J. Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol Lett. 1996 Jun 15;140(1):29–35. doi: 10.1111/j.1574-6968.1996.tb08310.x. [DOI] [PubMed] [Google Scholar]
  25. Martin I., Ruysschaert J. M., Sanders D., Giffard C. J. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan. Eur J Biochem. 1996 Jul 1;239(1):156–164. doi: 10.1111/j.1432-1033.1996.0156u.x. [DOI] [PubMed] [Google Scholar]
  26. Mastronicolis S. K., German J. B., Smith G. M. Diversity of the polar lipids of the food-borne pathogen Listeria monocytogenes. Lipids. 1996 Jun;31(6):635–640. doi: 10.1007/BF02523834. [DOI] [PubMed] [Google Scholar]
  27. Mazzotta A. S., Montville T. J. Nisin induces changes in membrane fatty acid composition of Listeria monocytogenes nisin-resistant strains at 10 degrees C and 30 degrees C. J Appl Microbiol. 1997 Jan;82(1):32–38. doi: 10.1111/j.1365-2672.1997.tb03294.x. [DOI] [PubMed] [Google Scholar]
  28. Mulders J. W., Boerrigter I. J., Rollema H. S., Siezen R. J., de Vos W. M. Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem. 1991 Nov 1;201(3):581–584. doi: 10.1111/j.1432-1033.1991.tb16317.x. [DOI] [PubMed] [Google Scholar]
  29. Püttmann M., Ade N., Hof H. Dependence of fatty acid composition of Listeria spp. on growth temperature. Res Microbiol. 1993 May;144(4):279–283. doi: 10.1016/0923-2508(93)90012-q. [DOI] [PubMed] [Google Scholar]
  30. Raetz C. R. Enzymology, genetics, and regulation of membrane phospholipid synthesis in Escherichia coli. Microbiol Rev. 1978 Sep;42(3):614–659. doi: 10.1128/mr.42.3.614-659.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. de Vos W. M., Mulders J. W., Siezen R. J., Hugenholtz J., Kuipers O. P. Properties of nisin Z and distribution of its gene, nisZ, in Lactococcus lactis. Appl Environ Microbiol. 1993 Jan;59(1):213–218. doi: 10.1128/aem.59.1.213-218.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van't Hof R., van Klompenburg W., Pilon M., Kozubek A., de Korte-Kool G., Demel R. A., Weisbeek P. J., de Kruijff B. The transit sequence mediates the specific interaction of the precursor of ferredoxin with chloroplast envelope membrane lipids. J Biol Chem. 1993 Feb 25;268(6):4037–4042. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES