Abstract
Escherichia coli bacteria have been observed to swim along a glass surface for several minutes at a time. Settling velocities of nonmotile cells and a computer simulation of motile cells confirmed that an attractive force kept the bacteria near the surface. The goal of this study was to evaluate whether this attractive force could be explained by reversible adhesion of E. coli to the surface in the secondary energy minimum, according to the theory of Derjaguin, Landan, Verwey, and Overbeek (DLVO theory). This theory describes interactions between colloidal particles by combining attractive van der Waals forces with repulsive electrostatic forces. A three-dimensional-tracking microscope was used to follow both wild-type and smooth-swimming E. coli bacteria as they interacted with a glass coverslip in media of increasing ionic strengths, which corresponded to increasing depths of the secondary energy minimum. We found no quantifiable changes with ionic strength for either the tendencies of individual bacteria to approach the surface or the overall times bacteria spent near the surface. One change in bacterial behavior which was observed with the change in ionic strength was that the diameters of the circles which the smooth-swimming bacteria traced out on the glass increased in low-ionic-strength solution.
Full Text
The Full Text of this article is available as a PDF (730.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adler J., Dahl M. M. A method for measuring the motility of bacteria and for comparing random and non-random motility. J Gen Microbiol. 1967 Feb;46(2):161–173. doi: 10.1099/00221287-46-2-161. [DOI] [PubMed] [Google Scholar]
- Armstrong J. B., Adler J., Dahl M. M. Nonchemotactic mutants of Escherichia coli. J Bacteriol. 1967 Jan;93(1):390–398. doi: 10.1128/jb.93.1.390-398.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berg H. C., Brown D. A. Chemotaxis in Escherichia coli analyzed by three-dimensional tracking. Antibiot Chemother (1971) 1974;19:55–78. doi: 10.1159/000395424. [DOI] [PubMed] [Google Scholar]
- Berg H. C. How to track bacteria. Rev Sci Instrum. 1971 Jun;42(6):868–871. doi: 10.1063/1.1685246. [DOI] [PubMed] [Google Scholar]
- Berg H. C., Turner L. Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys J. 1990 Oct;58(4):919–930. doi: 10.1016/S0006-3495(90)82436-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bylund J. E., Haines M. A., Walsh K., Bouloc P., D'Ari R., Higgins M. L. Buoyant density studies of several mecillinam-resistant and division mutants of Escherichia coli. J Bacteriol. 1991 Sep;173(17):5396–5402. doi: 10.1128/jb.173.17.5396-5402.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffy K. J., Cummings P. T., Ford R. M. Random walk calculations for bacterial migration in porous media. Biophys J. 1995 Mar;68(3):800–806. doi: 10.1016/S0006-3495(95)80256-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frymier P. D., Ford R. M., Berg H. C., Cummings P. T. Three-dimensional tracking of motile bacteria near a solid planar surface. Proc Natl Acad Sci U S A. 1995 Jun 20;92(13):6195–6199. doi: 10.1073/pnas.92.13.6195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gannon J., Tan Y. H., Baveye P., Alexander M. Effect of sodium chloride on transport of bacteria in a saturated aquifer material. Appl Environ Microbiol. 1991 Sep;57(9):2497–2501. doi: 10.1128/aem.57.9.2497-2501.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross M. J., Logan B. E. Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media. Appl Environ Microbiol. 1995 May;61(5):1750–1756. doi: 10.1128/aem.61.5.1750-1756.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harkes G., Dankert J., Feijen J. Bacterial migration along solid surfaces. Appl Environ Microbiol. 1992 May;58(5):1500–1505. doi: 10.1128/aem.58.5.1500-1505.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramia M., Tullock D. L., Phan-Thien N. The role of hydrodynamic interaction in the locomotion of microorganisms. Biophys J. 1993 Aug;65(2):755–778. doi: 10.1016/S0006-3495(93)81129-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe A. J., Conley M. P., Kramer T. J., Berg H. C. Reconstitution of signaling in bacterial chemotaxis. J Bacteriol. 1987 May;169(5):1878–1885. doi: 10.1128/jb.169.5.1878-1885.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zita A., Hermansson M. Effects of ionic strength on bacterial adhesion and stability of flocs in a wastewater activated sludge system. Appl Environ Microbiol. 1994 Sep;60(9):3041–3048. doi: 10.1128/aem.60.9.3041-3048.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]