Abstract
Heterologous expression of plant genes may serve as an important alternative for producing plant proteins. We have investigated the ability of the fungus Neurospora crassa to secrete zeamatin, a protein produced by Zea mays. Zeamatin was induced after being fused to glucoamylase, an extracellular hydrolase produced by N. crassa. Glucoamylase induction and other culture parameters were monitored in untransformed N. crassa grown in shaken liquid culture. A DNA plasmid, pGEZ, was constructed by inserting zeamatin-encoding cDNA into an expression cassette containing the promoter, a truncated open reading frame, and the terminator sequence of the N. crassa glucoamylase gene. Zeamatin-encoding cDNA was modified at the N terminus to include a kex-2 protease site, allowing cleavage of the chimeric product in the secretory pathway. Strains containing the chimeric gene construct were grown in liquid culture and induced for glucoamylase and zeamatin production. Zeamatin antibody detected a protein in a Western blot of concentrated culture supernatants that comigrated with authentic zeamatin. Secreted zeamatin was active in inhibiting the growth of Candida albicans in an agar diffusion assay, indicating that zeamatin had been correctly synthesized, processed, and secreted by N. crassa.
Full Text
The Full Text of this article is available as a PDF (837.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archer D. B., Jeenes D. J., MacKenzie D. A., Brightwell G., Lambert N., Lowe G., Radford S. E., Dobson C. M. Hen egg white lysozyme expressed in, and secreted from, Aspergillus niger is correctly processed and folded. Biotechnology (N Y) 1990 Aug;8(8):741–745. doi: 10.1038/nbt0890-741. [DOI] [PubMed] [Google Scholar]
- Contreras R., Carrez D., Kinghorn J. R., van den Hondel C. A., Fiers W. Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Biotechnology (N Y) 1991 Apr;9(4):378–381. doi: 10.1038/nbt0491-378. [DOI] [PubMed] [Google Scholar]
- Faus I., Patiño C., Río J. L., del Moral C., Barroso H. S., Rubio V. Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in Escherichia coli. Biochem Biophys Res Commun. 1996 Dec 4;229(1):121–127. doi: 10.1006/bbrc.1996.1767. [DOI] [PubMed] [Google Scholar]
- Finkelstein D. B. Improvement of enzyme production in Aspergillus. Antonie Van Leeuwenhoek. 1987;53(5):349–352. doi: 10.1007/BF00400559. [DOI] [PubMed] [Google Scholar]
- Goodwin D. C., Lee S. B. Microwave miniprep of total genomic DNA from fungi, plants, protists and animals for PCR. Biotechniques. 1993 Sep;15(3):438, 441-2, 444. [PubMed] [Google Scholar]
- Kleinman M. J., Wilkinson A. E., Wright I. P., Evans I. H., Bevan E. A. Purification and properties of an extracellular glucoamylase from a diastatic strain of Saccharomyces cerevisiae. Biochem J. 1988 Jan 1;249(1):163–170. doi: 10.1042/bj2490163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee J. H., Weickmann J. L., Koduri R. K., Ghosh-Dastidar P., Saito K., Blair L. C., Date T., Lai J. S., Hollenberg S. M., Kendall R. L. Expression of synthetic thaumatin genes in yeast. Biochemistry. 1988 Jul 12;27(14):5101–5107. doi: 10.1021/bi00414a023. [DOI] [PubMed] [Google Scholar]
- Malehorn D. E., Borgmeyer J. R., Smith C. E., Shah D. M. Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. Plant Physiol. 1994 Dec;106(4):1471–1481. doi: 10.1104/pp.106.4.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura Y., Gojobori T., Ikemura T. Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res. 1997 Jan 1;25(1):244–245. doi: 10.1093/nar/25.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perkins D. D. Neurospora: the organism behind the molecular revolution. Genetics. 1992 Apr;130(4):687–701. doi: 10.1093/genetics/130.4.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sigmund R. D., McNally M. T., Lee D. B., Free S. J. Neurospora glucamylase and a mutant affected in its regulation. Biochem Genet. 1985 Feb;23(1-2):89–103. doi: 10.1007/BF00499115. [DOI] [PubMed] [Google Scholar]
- Springer M. L., Yanofsky C. A morphological and genetic analysis of conidiophore development in Neurospora crassa. Genes Dev. 1989 Apr;3(4):559–571. doi: 10.1101/gad.3.4.559. [DOI] [PubMed] [Google Scholar]
- Stone P. J., Makoff A. J., Parish J. H., Radford A. Cloning and sequence analysis of the glucoamylase gene of Neurospora crassa. Curr Genet. 1993 Sep;24(3):205–211. doi: 10.1007/BF00351793. [DOI] [PubMed] [Google Scholar]
- Tsuchiya K., Nagashima T., Yamamoto Y., Gomi K., Kitamoto K., Kumagai C., Tamura G. High level secretion of calf chymosin using a glucoamylase-prochymosin fusion gene in Aspergillus oryzae. Biosci Biotechnol Biochem. 1994 May;58(5):895–899. doi: 10.1271/bbb.58.895. [DOI] [PubMed] [Google Scholar]
- Vigers A. J., Roberts W. K., Selitrennikoff C. P. A new family of plant antifungal proteins. Mol Plant Microbe Interact. 1991 Jul-Aug;4(4):315–323. doi: 10.1094/mpmi-4-315. [DOI] [PubMed] [Google Scholar]
- Ward M., Wilson L. J., Kodama K. H., Rey M. W., Berka R. M. Improved production of chymosin in Aspergillus by expression as a glucoamylase-chymosin fusion. Biotechnology (N Y) 1990 May;8(5):435–440. doi: 10.1038/nbt0590-435. [DOI] [PubMed] [Google Scholar]
- Ward P. P., Lo J. Y., Duke M., May G. S., Headon D. R., Conneely O. M. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae. Biotechnology (N Y) 1992 Jul;10(7):784–789. doi: 10.1038/nbt0792-784. [DOI] [PubMed] [Google Scholar]