Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3569–3576. doi: 10.1128/aem.63.9.3569-3576.1997

Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme.

G Dong 1, C Vieille 1, A Savchenko 1, J G Zeikus 1
PMCID: PMC168662  PMID: 9293008

Abstract

The gene encoding the hyperthermophilic extracellular alpha-amylase from Pyrococcus furiosus was cloned by activity screening in Escherichia coli. The gene encoded a single 460-residue polypeptide chain. The polypeptide contained a 26-residue signal peptide, indicating that this Pyrococcus alpha-amylase was an extracellular enzyme. Unlike the P. furiosus intracellular alpha-amylase, this extracellular enzyme showed 45 to 56% similarity and 20 to 35% identity to other amylolytic enzymes of the alpha-amylase family and contained the four consensus regions characteristic of that enzyme family. The recombinant protein was a homodimer with a molecular weight of 100,000, as estimated by gel filtration. Both the dimer and monomer retained starch-degrading activity after extensive denaturation and migration on sodium dodecyl sulfate-polyacrylamide gels. The P. furiosus alpha-amylase was a liquefying enzyme with a specific activity of 3,900 U mg-1 at 98 degrees C. It was optimally active at 100 degrees C and pH 5.5 to 6.0 and did not require Ca2+ for activity or thermostability. With a half-life of 13 h at 98 degrees C, the P. furiosus enzyme was significantly more thermostable than the commercially available Bacillus licheniformis alpha-amylase (Taka-therm).

Full Text

The Full Text of this article is available as a PDF (692.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. W. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol. 1993;47:627–658. doi: 10.1146/annurev.mi.47.100193.003211. [DOI] [PubMed] [Google Scholar]
  2. Adams M. W., Perler F. B., Kelly R. M. Extremozymes: expanding the limits of biocatalysis. Biotechnology (N Y) 1995 Jul;13(7):662–668. doi: 10.1038/nbt0795-662. [DOI] [PubMed] [Google Scholar]
  3. Bauer M. W., Bylina E. J., Swanson R. V., Kelly R. M. Comparison of a beta-glucosidase and a beta-mannosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Purification, characterization, gene cloning, and sequence analysis. J Biol Chem. 1996 Sep 27;271(39):23749–23755. doi: 10.1074/jbc.271.39.23749. [DOI] [PubMed] [Google Scholar]
  4. Boel E., Brady L., Brzozowski A. M., Derewenda Z., Dodson G. G., Jensen V. J., Petersen S. B., Swift H., Thim L., Woldike H. F. Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry. 1990 Jul 3;29(26):6244–6249. doi: 10.1021/bi00478a019. [DOI] [PubMed] [Google Scholar]
  5. Brown S. H., Costantino H. R., Kelly R. M. Characterization of Amylolytic Enzyme Activities Associated with the Hyperthermophilic Archaebacterium Pyrococcus furiosus. Appl Environ Microbiol. 1990 Jul;56(7):1985–1991. doi: 10.1128/aem.56.7.1985-1991.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown S. H., Kelly R. M. Characterization of Amylolytic Enzymes, Having Both alpha-1,4 and alpha-1,6 Hydrolytic Activity, from the Thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol. 1993 Aug;59(8):2614–2621. doi: 10.1128/aem.59.8.2614-2621.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buisson G., Duée E., Haser R., Payan F. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 1987 Dec 20;6(13):3909–3916. doi: 10.1002/j.1460-2075.1987.tb02731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan M. K., Mukund S., Kletzin A., Adams M. W., Rees D. C. Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science. 1995 Mar 10;267(5203):1463–1469. doi: 10.1126/science.7878465. [DOI] [PubMed] [Google Scholar]
  9. Chung Y. C., Kobayashi T., Kanai H., Akiba T., Kudo T. Purification and Properties of Extracellular Amylase from the Hyperthermophilic Archaeon Thermococcus profundus DT5432. Appl Environ Microbiol. 1995 Apr;61(4):1502–1506. doi: 10.1128/aem.61.4.1502-1506.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Costantino H. R., Brown S. H., Kelly R. M. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C. J Bacteriol. 1990 Jul;172(7):3654–3660. doi: 10.1128/jb.172.7.3654-3660.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. DiRuggiero J., Robb F. T., Jagus R., Klump H. H., Borges K. M., Kessel M., Mai X., Adams M. W. Characterization, cloning, and in vitro expression of the extremely thermostable glutamate dehydrogenase from the hyperthermophilic Archaeon, ES4. J Biol Chem. 1993 Aug 25;268(24):17767–17774. [PubMed] [Google Scholar]
  13. Dong G., Vieille C., Zeikus J. G. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol. 1997 Sep;63(9):3577–3584. doi: 10.1128/aem.63.9.3577-3584.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukusumi S., Kamizono A., Horinouchi S., Beppu T. Cloning and nucleotide sequence of a heat-stable amylase gene from an anaerobic thermophile, Dictyoglomus thermophilum. Eur J Biochem. 1988 May 16;174(1):15–21. doi: 10.1111/j.1432-1033.1988.tb14056.x. [DOI] [PubMed] [Google Scholar]
  15. Hain J., Reiter W. D., Hüdepohl U., Zillig W. Elements of an archaeal promoter defined by mutational analysis. Nucleic Acids Res. 1992 Oct 25;20(20):5423–5428. doi: 10.1093/nar/20.20.5423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  17. Horinouchi S., Fukusumi S., Ohshima T., Beppu T. Cloning and expression in Escherichia coli of two additional amylase genes of a strictly anaerobic thermophile, Dictyoglomus thermophilum, and their nucleotide sequences with extremely low guanine-plus-cytosine contents. Eur J Biochem. 1988 Sep 15;176(2):243–253. doi: 10.1111/j.1432-1033.1988.tb14275.x. [DOI] [PubMed] [Google Scholar]
  18. Jespersen H. M., MacGregor E. A., Henrissat B., Sierks M. R., Svensson B. Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (beta/alpha)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J Protein Chem. 1993 Dec;12(6):791–805. doi: 10.1007/BF01024938. [DOI] [PubMed] [Google Scholar]
  19. Laderman K. A., Asada K., Uemori T., Mukai H., Taguchi Y., Kato I., Anfinsen C. B. Alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J Biol Chem. 1993 Nov 15;268(32):24402–24407. [PubMed] [Google Scholar]
  20. Laderman K. A., Davis B. R., Krutzsch H. C., Lewis M. S., Griko Y. V., Privalov P. L., Anfinsen C. B. The purification and characterization of an extremely thermostable alpha-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem. 1993 Nov 15;268(32):24394–24401. [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. MOL W. Houding en beweging. Ned Tijdschr Geneeskd. 1956 Mar 31;100(13):897–900. [PubMed] [Google Scholar]
  23. Machius M., Wiegand G., Huber R. Crystal structure of calcium-depleted Bacillus licheniformis alpha-amylase at 2.2 A resolution. J Mol Biol. 1995 Mar 3;246(4):545–559. doi: 10.1006/jmbi.1994.0106. [DOI] [PubMed] [Google Scholar]
  24. Qian M., Haser R., Buisson G., Duée E., Payan F. The active center of a mammalian alpha-amylase. Structure of the complex of a pancreatic alpha-amylase with a carbohydrate inhibitor refined to 2.2-A resolution. Biochemistry. 1994 May 24;33(20):6284–6294. doi: 10.1021/bi00186a031. [DOI] [PubMed] [Google Scholar]
  25. Qian M., Haser R., Payan F. Structure and molecular model refinement of pig pancreatic alpha-amylase at 2.1 A resolution. J Mol Biol. 1993 Jun 5;231(3):785–799. doi: 10.1006/jmbi.1993.1326. [DOI] [PubMed] [Google Scholar]
  26. Reiter W. D., Palm P., Zillig W. Transcription termination in the archaebacterium Sulfolobus: signal structures and linkage to transcription initiation. Nucleic Acids Res. 1988 Mar 25;16(6):2445–2459. doi: 10.1093/nar/16.6.2445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rüdiger A., Jorgensen P. L., Antranikian G. Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl Environ Microbiol. 1995 Feb;61(2):567–575. doi: 10.1128/aem.61.2.567-575.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schumann J., Wrba A., Jaenicke R., Stetter K. O. Topographical and enzymatic characterization of amylases from the extremely thermophilic eubacterium Thermotoga maritima. FEBS Lett. 1991 Apr 22;282(1):122–126. doi: 10.1016/0014-5793(91)80459-g. [DOI] [PubMed] [Google Scholar]
  29. Teplyakov A. V., Kuranova I. P., Harutyunyan E. H., Vainshtein B. K., Frömmel C., Höhne W. E., Wilson K. S. Crystal structure of thermitase at 1.4 A resolution. J Mol Biol. 1990 Jul 5;214(1):261–279. doi: 10.1016/0022-2836(90)90160-n. [DOI] [PubMed] [Google Scholar]
  30. Tiboni O., Cammarano P., Sanangelantoni A. M. Cloning and sequencing of the gene encoding glutamine synthetase I from the archaeum Pyrococcus woesei: anomalous phylogenies inferred from analysis of archaeal and bacterial glutamine synthetase I sequences. J Bacteriol. 1993 May;175(10):2961–2969. doi: 10.1128/jb.175.10.2961-2969.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tomazic S. J., Klibanov A. M. Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J Biol Chem. 1988 Mar 5;263(7):3086–3091. [PubMed] [Google Scholar]
  32. Tomazic S. J., Klibanov A. M. Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another? J Biol Chem. 1988 Mar 5;263(7):3092–3096. [PubMed] [Google Scholar]
  33. Vieille C., Burdette D. S., Zeikus J. G. Thermozymes. Biotechnol Annu Rev. 1996;2:1–83. doi: 10.1016/s1387-2656(08)70006-1. [DOI] [PubMed] [Google Scholar]
  34. Vieille C., Hess J. M., Kelly R. M., Zeikus J. G. xylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Appl Environ Microbiol. 1995 May;61(5):1867–1875. doi: 10.1128/aem.61.5.1867-1875.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Violet M., Meunier J. C. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis alpha-amylase. Biochem J. 1989 Nov 1;263(3):665–670. doi: 10.1042/bj2630665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Voorhorst W. G., Eggen R. I., Geerling A. C., Platteeuw C., Siezen R. J., Vos W. M. Isolation and characterization of the hyperthermostable serine protease, pyrolysin, and its gene from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1996 Aug 23;271(34):20426–20431. doi: 10.1074/jbc.271.34.20426. [DOI] [PubMed] [Google Scholar]
  37. Voorhorst W. G., Eggen R. I., Luesink E. J., de Vos W. M. Characterization of the celB gene coding for beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus and its expression and site-directed mutation in Escherichia coli. J Bacteriol. 1995 Dec;177(24):7105–7111. doi: 10.1128/jb.177.24.7105-7111.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Watson M. E. Compilation of published signal sequences. Nucleic Acids Res. 1984 Jul 11;12(13):5145–5164. doi: 10.1093/nar/12.13.5145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yasukawa T., Kanei-Ishii C., Maekawa T., Fujimoto J., Yamamoto T., Ishii S. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J Biol Chem. 1995 Oct 27;270(43):25328–25331. doi: 10.1074/jbc.270.43.25328. [DOI] [PubMed] [Google Scholar]
  40. Zwickl P., Fabry S., Bogedain C., Haas A., Hensel R. Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. J Bacteriol. 1990 Aug;172(8):4329–4338. doi: 10.1128/jb.172.8.4329-4338.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES