Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3594–3599. doi: 10.1128/aem.63.9.3594-3599.1997

Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei.

G T Townsend 1, J M Suflita 1
PMCID: PMC168666  PMID: 9293011

Abstract

The inhibition of aryl reductive dehalogenation reactions by sulfur oxyanions has been demonstrated in environmental samples, dehalogenating enrichments, and the sulfate-reducing bacterium Desulfomonile tiedjei; however, this phenomenon is not well understood. We examined the effects of sulfate, sulfite, and thiosulfate on reductive dehalogenation in the model microorganism D. tiedjei and found separate mechanisms of inhibition due to these oxyanions under growth versus nongrowth conditions. Dehalogenation activity was greatly reduced in extracts of cells grown in the presence of both 3-chlorobenzoate, the substrate or inducer for the aryl dehalogenation activity, and either sulfate, sulfite, or thiosulfate, indicating that sulfur oxyanions repress the requisite enzymes. In extracts of fully induced cells, thiosulfate and sulfite, but not sulfate, were potent inhibitors of aryl dehalogenation activity even in membrane fractions lacking the cytoplasmically located sulfur oxyanion reductase. These results suggest that under growth conditions, sulfur oxyanions serve as preferred electron acceptors and negatively influence dehalogenation activity in D. tiedjei by regulating the amount of active aryl dehalogenase in cells. Additionally, in vitro inhibition by sulfur oxyanions is due to the interaction of the reactive species with enzymes involved in dehalogenation and need not involve competition between two respiratory processes for reducing equivalents. Sulfur oxyanions also inhibited tetrachloroethylene dehalogenation by the same mechanisms, further indicating that chloroethylenes are fortuitously dehalogenated by the aryl dehalogenase. The commonly observed inhibition of reductive dehalogenation reactions under sulfate-reducing conditions may be due to similar regulation mechanisms in other dehalogenating microorganisms that contain multiple respiratory activities.

Full Text

The Full Text of this article is available as a PDF (209.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allard A. S., Hynning P. A., Remberger M., Neilson A. H. Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavanone glycones and aglycones. Appl Environ Microbiol. 1992 Mar;58(3):961–968. doi: 10.1128/aem.58.3.961-968.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cole J. R., Cascarelli A. L., Mohn W. W., Tiedje J. M. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Appl Environ Microbiol. 1994 Oct;60(10):3536–3542. doi: 10.1128/aem.60.10.3536-3542.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cole J. R., Fathepure B. Z., Tiedje J. M. Tetrachloroethene and 3-chlorobenzoate dechlorination activities are co-induced in Desulfomonile tiedjei DCB-1. Biodegradation. 1995 Jun;6(2):167–172. doi: 10.1007/BF00695347. [DOI] [PubMed] [Google Scholar]
  4. DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Deweerd K. A., Suflita J. M. Anaerobic Aryl Reductive Dehalogenation of Halobenzoates by Cell Extracts of "Desulfomonile tiedjei". Appl Environ Microbiol. 1990 Oct;56(10):2999–3005. doi: 10.1128/aem.56.10.2999-3005.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gerritse J., Renard V., Pedro Gomes T. M., Lawson P. A., Collins M. D., Gottschal J. C. Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol. 1996 Feb;165(2):132–140. doi: 10.1007/s002030050308. [DOI] [PubMed] [Google Scholar]
  7. Gibson S. A., Suflita J. M. Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic Acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols. Appl Environ Microbiol. 1990 Jun;56(6):1825–1832. doi: 10.1128/aem.56.6.1825-1832.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson S. A., Suflita J. M. Extrapolation of biodegradation results to groundwater aquifers: reductive dehalogenation of aromatic compounds. Appl Environ Microbiol. 1986 Oct;52(4):681–688. doi: 10.1128/aem.52.4.681-688.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holliger C., Schraa G., Stams A. J., Zehnder A. J. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol. 1993 Sep;59(9):2991–2997. doi: 10.1128/aem.59.9.2991-2997.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Häggblom M. M., Young L. Y. Chlorophenol degradation coupled to sulfate reduction. Appl Environ Microbiol. 1990 Nov;56(11):3255–3260. doi: 10.1128/aem.56.11.3255-3260.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kaprálek F., Jechová E., Otavová M. Two sites of oxygen control in induced synthesis of respiratory nitrate reductase in Escherichia coli. J Bacteriol. 1982 Mar;149(3):1142–1145. doi: 10.1128/jb.149.3.1142-1145.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kohring G. W., Zhang X. M., Wiegel J. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate. Appl Environ Microbiol. 1989 Oct;55(10):2735–2737. doi: 10.1128/aem.55.10.2735-2737.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krumholz L. R., Sharp R., Fishbain S. S. A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol. 1996 Nov;62(11):4108–4113. doi: 10.1128/aem.62.11.4108-4113.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuhn E. P., Townsend G. T., Suflita J. M. Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries. Appl Environ Microbiol. 1990 Sep;56(9):2630–2637. doi: 10.1128/aem.56.9.2630-2637.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Linkfield T. G., Suflita J. M., Tiedje J. M. Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Appl Environ Microbiol. 1989 Nov;55(11):2773–2778. doi: 10.1128/aem.55.11.2773-2778.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Linkfield T. G., Tiedje J. M. Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J Ind Microbiol. 1990 Jan;5(1):9–15. doi: 10.1007/BF01569601. [DOI] [PubMed] [Google Scholar]
  17. Loffler F. E., Sanford R. A., Tiedje J. M. Initial Characterization of a Reductive Dehalogenase from Desulfitobacterium chlororespirans Co23. Appl Environ Microbiol. 1996 Oct;62(10):3809–3813. doi: 10.1128/aem.62.10.3809-3813.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Madsen T., Aamand J. Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl Environ Microbiol. 1991 Sep;57(9):2453–2458. doi: 10.1128/aem.57.9.2453-2458.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. May H. D., Boyle A. W., Price W. A., 2nd, Blake C. K. Subculturing of a polychlorinated biphenyl-dechlorinating anaerobic enrichment on solid media. Appl Environ Microbiol. 1992 Dec;58(12):4051–4054. doi: 10.1128/aem.58.12.4051-4054.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mohn W. W., Kennedy K. J. Limited degradation of chlorophenols by anaerobic sludge granules. Appl Environ Microbiol. 1992 Jul;58(7):2131–2136. doi: 10.1128/aem.58.7.2131-2136.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Müller F., Massey V. Flavin-sulfite complexes and their structures. J Biol Chem. 1969 Aug 10;244(15):4007–4016. [PubMed] [Google Scholar]
  22. Neumann A., Scholz-Muramatsu H., Diekert G. Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol. 1994;162(4):295–301. doi: 10.1007/BF00301854. [DOI] [PubMed] [Google Scholar]
  23. Neumann A., Wohlfarth G., Diekert G. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J Biol Chem. 1996 Jul 12;271(28):16515–16519. doi: 10.1074/jbc.271.28.16515. [DOI] [PubMed] [Google Scholar]
  24. Ni S., Fredrickson J. K., Xun L. Purification and characterization of a novel 3-chlorobenzoate-reductive dehalogenase from the cytoplasmic membrane of Desulfomonile tiedjei DCB-1. J Bacteriol. 1995 Sep;177(17):5135–5139. doi: 10.1128/jb.177.17.5135-5139.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanford R. A., Cole J. R., Löffler F. E., Tiedje J. M. Characterization of Desulfitobacterium chlororespirans sp. nov., which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl Environ Microbiol. 1996 Oct;62(10):3800–3808. doi: 10.1128/aem.62.10.3800-3808.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schumacher W., Holliger C. The proton/electron ration of the menaquinone-dependent electron transport from dihydrogen to tetrachloroethene in "Dehalobacter restrictus". J Bacteriol. 1996 Apr;178(8):2328–2333. doi: 10.1128/jb.178.8.2328-2333.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol. 1984 Oct;48(4):840–848. doi: 10.1128/aem.48.4.840-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  29. Stevens T. O., Linkfield T. G., Tiedje J. M. Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium. Appl Environ Microbiol. 1988 Dec;54(12):2938–2943. doi: 10.1128/aem.54.12.2938-2943.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Swoboda B. E., Massey V. On the reaction of the glucose oxidase from Aspergillus niger with bisulfite. J Biol Chem. 1966 Jul 25;241(14):3409–3416. [PubMed] [Google Scholar]
  31. Townsend G. T., Ramanand K., Suflita J. M. Reductive dehalogenation and mineralization of 3-chlorobenzoate in the presence of sulfate by microorganisms from a methanogenic aquifer. Appl Environ Microbiol. 1997 Jul;63(7):2785–2791. doi: 10.1128/aem.63.7.2785-2791.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Townsend G. T., Suflita J. M. Characterization of Chloroethylene Dehalogenation by Cell Extracts of Desulfomonile tiedjei and Its Relationship to Chlorobenzoate Dehalogenation. Appl Environ Microbiol. 1996 Aug;62(8):2850–2853. doi: 10.1128/aem.62.8.2850-2853.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Utkin I., Woese C., Wiegel J. Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int J Syst Bacteriol. 1994 Oct;44(4):612–619. doi: 10.1099/00207713-44-4-612. [DOI] [PubMed] [Google Scholar]
  34. Würfel M., Häberlein I., Follmann H. Facile sulfitolysis of the disulfide bonds in oxidized thioredoxin and glutaredoxin. Eur J Biochem. 1993 Feb 1;211(3):609–614. doi: 10.1111/j.1432-1033.1993.tb17588.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES