Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3628–3636. doi: 10.1128/aem.63.9.3628-3636.1997

Interactions of nisin and pediocin PA-1 with closely related lactic acid bacteria that manifest over 100-fold differences in bacteriocin sensitivity.

M H Bennik 1, A Verheul 1, T Abee 1, G Naaktgeboren-Stoffels 1, L G Gorris 1, E J Smid 1
PMCID: PMC168670  PMID: 9293015

Abstract

The natural variation in the susceptibilities of gram-positive bacteria towards the bacteriocins nisin and pediocin PA-1 is considerable. This study addresses the factors associated with this variability for closely related lactic acid bacteria. We compared two sets of nonbacteriocinogenic strains for which the MICs of nisin and pediocin PA-1 differed 100- to 1,000-fold: Lactobacillus sake DSM20017 and L. sake DSM20497 and Pediococcus dextrinicus and Pediococcus pentosaccus. Strikingly, the bacteriocin-sensitive and -insensitive strains showed a similar concentration-dependent dissipation of their membrane potential (delta psi) after exposure to these bacteriocins. The bacteriocin-induced dissipation of delta psi below the MICs for the insensitive strains did not coincide with a reduction of intracellular ATP pools and glycolytic rates. This was not observed with the sensitive strains. Analysis of membrane lipid properties revealed minor differences in the phospho- and glycolipid compositions of both sets of strains. The interactions of the bacteriocins with strain-specific lipids were not significantly different in a lipid monolayer assay. Further lipid analysis revealed higher in situ membrane fluidity of the bacteriocin-sensitive Pediococcus strain compared with that for the insensitive strain, but the opposite was found for the L. sake strains. Our results provide evidence that the association of bacteriocins with the cell membrane and their subsequent insertion take place in a similar way for cells that have a high or a low natural tolerance towards bacteriocins. For insensitive strains, overall membrane constitution rather than mere membrane fluidity may preclude the formation of pores with sufficient diameters and lifetimes to ultimately cause cell death.

Full Text

The Full Text of this article is available as a PDF (377.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T., Rombouts F. M., Hugenholtz J., Guihard G., Letellier L. Mode of Action of Nisin Z against Listeria monocytogenes Scott A Grown at High and Low Temperatures. Appl Environ Microbiol. 1994 Jun;60(6):1962–1968. doi: 10.1128/aem.60.6.1962-1968.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelsson L., Holck A., Birkeland S. E., Aukrust T., Blom H. Cloning and nucleotide sequence of a gene from Lactobacillus sake Lb706 necessary for sakacin A production and immunity. Appl Environ Microbiol. 1993 Sep;59(9):2868–2875. doi: 10.1128/aem.59.9.2868-2875.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. Bennik M., Smid E. J., Gorris L. Vegetable-Associated Pediococcus parvulus Produces Pediocin PA-1. Appl Environ Microbiol. 1997 May;63(5):2074–2076. doi: 10.1128/aem.63.5.2074-2076.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breeuwer P., Drocourt J., Rombouts F. M., Abee T. A Novel Method for Continuous Determination of the Intracellular pH in Bacteria with the Internally Conjugated Fluorescent Probe 5 (and 6-)-Carboxyfluorescein Succinimidyl Ester. Appl Environ Microbiol. 1996 Jan;62(1):178–183. doi: 10.1128/aem.62.1.178-183.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bruno M. E., Kaiser A., Montville T. J. Depletion of proton motive force by nisin in Listeria monocytogenes cells. Appl Environ Microbiol. 1992 Jul;58(7):2255–2259. doi: 10.1128/aem.58.7.2255-2259.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruno M. E., Montville T. J. Common mechanistic action of bacteriocins from lactic Acid bacteria. Appl Environ Microbiol. 1993 Sep;59(9):3003–3010. doi: 10.1128/aem.59.9.3003-3010.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen Y., Shapira R., Eisenstein M., Montville T. J. Functional characterization of pediocin PA-1 binding to liposomes in the absence of a protein receptor and its relationship to a predicted tertiary structure. Appl Environ Microbiol. 1997 Feb;63(2):524–531. doi: 10.1128/aem.63.2.524-531.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chikindas M. L., García-Garcerá M. J., Driessen A. J., Ledeboer A. M., Nissen-Meyer J., Nes I. F., Abee T., Konings W. N., Venema G. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol. 1993 Nov;59(11):3577–3584. doi: 10.1128/aem.59.11.3577-3584.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davies E. A., Adams M. R. Resistance of Listeria monocytogenes to the bacteriocin nisin. Int J Food Microbiol. 1994 Mar;21(4):341–347. doi: 10.1016/0168-1605(94)90064-7. [DOI] [PubMed] [Google Scholar]
  11. Davies E. A., Falahee M. B., Adams M. R. Involvement of the cell envelope of Listeria monocytogenes in the acquisition of nisin resistance. J Appl Bacteriol. 1996 Aug;81(2):139–146. doi: 10.1111/j.1365-2672.1996.tb04491.x. [DOI] [PubMed] [Google Scholar]
  12. Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
  13. Demel R. A., Peelen T., Siezen R. J., De Kruijff B., Kuipers O. P. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. Eur J Biochem. 1996 Jan 15;235(1-2):267–274. doi: 10.1111/j.1432-1033.1996.00267.x. [DOI] [PubMed] [Google Scholar]
  14. Driessen A. J., van den Hooven H. W., Kuiper W., van de Kamp M., Sahl H. G., Konings R. N., Konings W. N. Mechanistic studies of lantibiotic-induced permeabilization of phospholipid vesicles. Biochemistry. 1995 Feb 7;34(5):1606–1614. doi: 10.1021/bi00005a017. [DOI] [PubMed] [Google Scholar]
  15. Drucker D. B., Megson G., Harty D. W., Riba I., Gaskell S. J. Phospholipids of Lactobacillus spp. J Bacteriol. 1995 Nov;177(21):6304–6308. doi: 10.1128/jb.177.21.6304-6308.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fabrie C. H., Smeets J. M., de Kruijff B., de Gier J. The cryoprotectant trehalose destabilises the bilayer organisation of Escherichia coli-derived membrane systems at elevated temperatures as determined by 2H and 31P-NMR. Chem Phys Lipids. 1994 Apr 19;70(2):133–145. doi: 10.1016/0009-3084(94)90081-7. [DOI] [PubMed] [Google Scholar]
  17. Gao F. H., Abee T., Konings W. N. Mechanism of action of the peptide antibiotic nisin in liposomes and cytochrome c oxidase-containing proteoliposomes. Appl Environ Microbiol. 1991 Aug;57(8):2164–2170. doi: 10.1128/aem.57.8.2164-2170.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Garcerá M. J., Elferink M. G., Driessen A. J., Konings W. N. In vitro pore-forming activity of the lantibiotic nisin. Role of protonmotive force and lipid composition. Eur J Biochem. 1993 Mar 1;212(2):417–422. doi: 10.1111/j.1432-1033.1993.tb17677.x. [DOI] [PubMed] [Google Scholar]
  19. Gonzalez B., Glaasker E., Kunji E., Driessen A., Suarez J. E., Konings W. N. Bactericidal mode of action of plantaricin C. Appl Environ Microbiol. 1996 Aug;62(8):2701–2709. doi: 10.1128/aem.62.8.2701-2709.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Guihard G., Bénédetti H., Besnard M., Letellier L. Phosphate efflux through the channels formed by colicins and phage T5 in Escherichia coli cells is responsible for the fall in cytoplasmic ATP. J Biol Chem. 1993 Aug 25;268(24):17775–17780. [PubMed] [Google Scholar]
  21. Harris L. J., Fleming H. P., Klaenhammer T. R. Novel paired starter culture system for sauerkraut, consisting of a nisin-resistant Leuconostoc mesenteroides strain and a nisin-producing Lactococcus lactis strain. Appl Environ Microbiol. 1992 May;58(5):1484–1489. doi: 10.1128/aem.58.5.1484-1489.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Henderson J. T., Chopko A. L., van Wassenaar P. D. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys. 1992 May 15;295(1):5–12. doi: 10.1016/0003-9861(92)90480-k. [DOI] [PubMed] [Google Scholar]
  23. Holck A., Axelsson L., Birkeland S. E., Aukrust T., Blom H. Purification and amino acid sequence of sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Gen Microbiol. 1992 Dec;138(12):2715–2720. doi: 10.1099/00221287-138-12-2715. [DOI] [PubMed] [Google Scholar]
  24. Killian J. A., Koorengevel M. C., Bouwstra J. A., Gooris G., Dowhan W., de Kruijff B. Effect of divalent cations on lipid organization of cardiolipin isolated from Escherichia coli strain AH930. Biochim Biophys Acta. 1994 Jan 19;1189(2):225–232. doi: 10.1016/0005-2736(94)90069-8. [DOI] [PubMed] [Google Scholar]
  25. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  26. Kordel M., Benz R., Sahl H. G. Mode of action of the staphylococcinlike peptide Pep 5: voltage-dependent depolarization of bacterial and artificial membranes. J Bacteriol. 1988 Jan;170(1):84–88. doi: 10.1128/jb.170.1.84-88.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kuipers O. P., Beerthuyzen M. M., Siezen R. J., De Vos W. M. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur J Biochem. 1993 Aug 15;216(1):281–291. doi: 10.1111/j.1432-1033.1993.tb18143.x. [DOI] [PubMed] [Google Scholar]
  28. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  29. Lundin A., Thore A. Analytical information obtainable by evaluation of the time course of firefly bioluminescence in the assay of ATP. Anal Biochem. 1975 May 26;66(1):47–63. doi: 10.1016/0003-2697(75)90723-x. [DOI] [PubMed] [Google Scholar]
  30. Maisnier-Patin S., Richard J. Cell wall changes in nisin-resistant variants of Listeria innocua grown in the presence of high nisin concentrations. FEMS Microbiol Lett. 1996 Jun 15;140(1):29–35. doi: 10.1111/j.1574-6968.1996.tb08310.x. [DOI] [PubMed] [Google Scholar]
  31. Marugg J. D., Gonzalez C. F., Kunka B. S., Ledeboer A. M., Pucci M. J., Toonen M. Y., Walker S. A., Zoetmulder L. C., Vandenbergh P. A. Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Appl Environ Microbiol. 1992 Aug;58(8):2360–2367. doi: 10.1128/aem.58.8.2360-2367.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Motlagh A., Bukhtiyarova M., Ray B. Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici. Lett Appl Microbiol. 1994 Jun;18(6):305–312. doi: 10.1111/j.1472-765x.1994.tb00876.x. [DOI] [PubMed] [Google Scholar]
  33. Nes I. F., Diep D. B., Håvarstein L. S., Brurberg M. B., Eijsink V., Holo H. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):113–128. doi: 10.1007/BF00395929. [DOI] [PubMed] [Google Scholar]
  34. Ojcius D. M., Young J. D. Cytolytic pore-forming proteins and peptides: is there a common structural motif? Trends Biochem Sci. 1991 Jun;16(6):225–229. doi: 10.1016/0968-0004(91)90090-i. [DOI] [PubMed] [Google Scholar]
  35. Quadri L. E., Sailer M., Terebiznik M. R., Roy K. L., Vederas J. C., Stiles M. E. Characterization of the protein conferring immunity to the antimicrobial peptide carnobacteriocin B2 and expression of carnobacteriocins B2 and BM1. J Bacteriol. 1995 Mar;177(5):1144–1151. doi: 10.1128/jb.177.5.1144-1151.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ruhr E., Sahl H. G. Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother. 1985 May;27(5):841–845. doi: 10.1128/aac.27.5.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sahl H. G., Kordel M., Benz R. Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol. 1987;149(2):120–124. doi: 10.1007/BF00425076. [DOI] [PubMed] [Google Scholar]
  38. Stiles M. E. Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek. 1996 Oct;70(2-4):331–345. doi: 10.1007/BF00395940. [DOI] [PubMed] [Google Scholar]
  39. Stoffels G., Nissen-Meyer J., Gudmundsdottir A., Sletten K., Holo H., Nes I. F. Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Appl Environ Microbiol. 1992 May;58(5):1417–1422. doi: 10.1128/aem.58.5.1417-1422.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Suutari M., Laakso S. Microbial fatty acids and thermal adaptation. Crit Rev Microbiol. 1994;20(4):285–328. doi: 10.3109/10408419409113560. [DOI] [PubMed] [Google Scholar]
  41. Venema K., Haverkort R. E., Abee T., Haandrikman A. J., Leenhouts K. J., de Leij L., Venema G., Kok J. Mode of action of LciA, the lactococcin A immunity protein. Mol Microbiol. 1994 Nov;14(3):521–532. doi: 10.1111/j.1365-2958.1994.tb02186.x. [DOI] [PubMed] [Google Scholar]
  42. Venema K., Venema G., Kok J. Lactococcal bacteriocins: mode of action and immunity. Trends Microbiol. 1995 Aug;3(8):299–304. doi: 10.1016/s0966-842x(00)88958-1. [DOI] [PubMed] [Google Scholar]
  43. Winkowski K., Bruno M. E., Montville T. J. Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to nisin. Appl Environ Microbiol. 1994 Nov;60(11):4186–4188. doi: 10.1128/aem.60.11.4186-4188.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. ten Brink B., Otto R., Hansen U. P., Konings W. N. Energy recycling by lactate efflux in growing and nongrowing cells of Streptococcus cremoris. J Bacteriol. 1985 Apr;162(1):383–390. doi: 10.1128/jb.162.1.383-390.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. van Belkum M. J., Kok J., Venema G., Holo H., Nes I. F., Konings W. N., Abee T. The bacteriocin lactococcin A specifically increases permeability of lactococcal cytoplasmic membranes in a voltage-independent, protein-mediated manner. J Bacteriol. 1991 Dec;173(24):7934–7941. doi: 10.1128/jb.173.24.7934-7941.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES