Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3695–3697. doi: 10.1128/aem.63.9.3695-3697.1997

Effects of pH on distribution of Listeria ribotypes in corn, hay, and grass silage.

E T Ryser 1, S M Arimi 1, C W Donnelly 1
PMCID: PMC168675  PMID: 9293020

Abstract

Listeria app, isolated from 13 of 129 (10%) corn silage samples, 21 of 76 (28%) hay silage samples, and 3 of 5 (60%) grass silage samples during a previous Vermont survey were subjected to automated ribotype (RT) analysis. The 13 positive corn silage samples contained 3 Listeria monocytogenes isolated (three RTs, including one known clinical RT) and 10 L. innocua isolates (four RTs). Similarly, 2 L. monocytogenes isolates (two RTs) and 19 L. innocua isolates (three RTs) were identified in the 21 positive hay silage samples. The three positive grass silage samples contained two L. innocua isolates (two RTs) and one isolate of L. welshimeri. One hundred seven of 129 (83%) high-quality (pH < 4.0) corn silage samples accounted for 8 of 13 Listeria isolates from corn silage, including isolates belonging to one L. monocytogenes clinical RT. In contrast, low-quality hay silage (70 of 76 [92%] samples having a pH of > or = 4.0) harbored 20 of 21 isolates, including isolates belonging to two nonclinical L. monocytogenes RTs. Poor-quality silage is readily discernible by appearance; however, these findings raise new concerns regarding the safety of high-quality (pH < 4.0) corn silage, which can contain Listeria spp., including L. monocytogenes strains belonging to RTs of clinical importance in cases of food-borne listeriosis.

Full Text

The Full Text of this article is available as a PDF (163.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruce J. L., Hubner R. J., Cole E. M., McDowell C. I., Webster J. A. Sets of EcoRI fragments containing ribosomal RNA sequences are conserved among different strains of Listeria monocytogenes. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5229–5233. doi: 10.1073/pnas.92.11.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fenlon D. R. Rapid quantitative assessment of the distribution of Listeria in silage implicated in a suspected outbreak of listeriosis in calves. Vet Rec. 1986 Mar 1;118(9):240–242. doi: 10.1136/vr.118.9.240. [DOI] [PubMed] [Google Scholar]
  3. Fensterbank R., Audurier A., Godu J., Guerrault P., Malo N. Etude des souches de listeria isolées d'animaux malades et de l'ensilage consommé. Ann Rech Vet. 1984;15(1):113–118. [PubMed] [Google Scholar]
  4. GRAY M. L. A possible link in the relationship between silage feeding and listeriosis. J Am Vet Med Assoc. 1960 Mar 1;136:205–208. [PubMed] [Google Scholar]
  5. Gitter M., Bradley R., Blampied P. H. Listeria monocytogenes infection in bovine mastitis. Vet Rec. 1980 Oct 25;107(17):390–393. doi: 10.1136/vr.107.17.390. [DOI] [PubMed] [Google Scholar]
  6. Grøonstøol H. Listeriosis in sheep. Listeria monocytogenes excretion and immunological state in sheep in flocks with clinical listeriosis. Acta Vet Scand. 1979;20(3):417–428. doi: 10.1186/BF03546603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hubner R. J., Cole E. M., Bruce J. L., McDowell C. I., Webster J. A. Types of Listeria monocytogenes predicted by the positions of EcoRI cleavage sites relative to ribosomal RNA sequences. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5234–5238. doi: 10.1073/pnas.92.11.5234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Low J. C., Renton C. P. Septicaemia, encephalitis and abortions in a housed flock of sheep caused by Listeria monocytogenes type 1/2. Vet Rec. 1985 Feb 9;116(6):147–150. doi: 10.1136/vr.116.6.147. [DOI] [PubMed] [Google Scholar]
  9. Low J. C., Wright F., McLauchlin J., Donachie W. Serotyping and distribution of Listeria isolates from cases of ovine listeriosis. Vet Rec. 1993 Aug 14;133(7):165–166. doi: 10.1136/vr.133.7.165. [DOI] [PubMed] [Google Scholar]
  10. McLauchlin J., Audurier A., Taylor A. G. Aspects of the epidemiology of human Listeria monocytogenes infections in Britain 1967-1984; the use of serotyping and phage typing. J Med Microbiol. 1986 Dec;22(4):367–377. doi: 10.1099/00222615-22-4-367. [DOI] [PubMed] [Google Scholar]
  11. O'Driscoll B., Gahan C. G., Hill C. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol. 1996 May;62(5):1693–1698. doi: 10.1128/aem.62.5.1693-1698.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ryser E. T., Arimi S. M., Bunduki M. M., Donnelly C. W. Recovery of different Listeria ribotypes from naturally contaminated, raw refrigerated meat and poultry products with two primary enrichment media. Appl Environ Microbiol. 1996 May;62(5):1781–1787. doi: 10.1128/aem.62.5.1781-1787.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sanaa M., Poutrel B., Menard J. L., Serieys F. Risk factors associated with contamination of raw milk by Listeria monocytogenes in dairy farms. J Dairy Sci. 1993 Oct;76(10):2891–2898. doi: 10.3168/jds.S0022-0302(93)77628-6. [DOI] [PubMed] [Google Scholar]
  14. Vázquez-Boland J. A., Dominguez L., Blanco M., Rocourt J., Fernández-Garayzábal J. F., Gutiérrez C. B., Tascón R. I., Rodriguez-Ferri E. F. Epidemiologic investigation of a silage-associated epizootic of ovine listeric encephalitis, using a new Listeria-selective enumeration medium and phage typing. Am J Vet Res. 1992 Mar;53(3):368–371. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES