Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Sep;63(9):3719–3723. doi: 10.1128/aem.63.9.3719-3723.1997

Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways.

L G Whyte 1, L Bourbonniére 1, C W Greer 1
PMCID: PMC168679  PMID: 9293024

Abstract

Three hydrocarbon-degrading psychrotrophic bacteria were isolated from petroleum-contaminated Arctic soils and characterized. Two of the strains, identified as Pseudomonas spp., degraded C5 to C12 n-alkanes, toluene, and naphthalene at both 5 and 25 degrees C and possessed both the alk catabolic pathway for alkane biodegradation and the nah catabolic pathway for polynuclear aromatic hydrocarbon biodegradation. One of these strains contained both a plasmid slightly smaller than the P. oleovorans OCT plasmid, which hybridized to an alkB gene probe, and a NAH plasmid similar to NAH7, demonstrating that both catabolic pathways, located on separate plasmids, can naturally coexist in the same bacterium.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berthelet M., Whyte L. G., Greer C. W. Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpolypyrrolidone spin columns. FEMS Microbiol Lett. 1996 Apr 15;138(1):17–22. doi: 10.1111/j.1574-6968.1996.tb08128.x. [DOI] [PubMed] [Google Scholar]
  2. Connors M. A., Barnsley E. A. Naphthalene plasmids in pseudomonads. J Bacteriol. 1982 Mar;149(3):1096–1101. doi: 10.1128/jb.149.3.1096-1101.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Efroymson R. A., Alexander M. Biodegradation by an arthrobacter species of hydrocarbons partitioned into an organic solvent. Appl Environ Microbiol. 1991 May;57(5):1441–1447. doi: 10.1128/aem.57.5.1441-1447.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983 Oct 14;222(4620):167–169. doi: 10.1126/science.6353574. [DOI] [PubMed] [Google Scholar]
  5. Foght J. M., Fedorak P. M., Westlake D. W. Mineralization of [14C]hexadecane and [14C]phenanthrene in crude oil: specificity among bacterial isolates. Can J Microbiol. 1990 Mar;36(3):169–175. doi: 10.1139/m90-030. [DOI] [PubMed] [Google Scholar]
  6. Ghosal D., You I. S., Gunsalus I. C. Nucleotide sequence and expression of gene nahH of plasmid NAH7 and homology with gene xylE of TOL pWWO. Gene. 1987;55(1):19–28. doi: 10.1016/0378-1119(87)90244-7. [DOI] [PubMed] [Google Scholar]
  7. Greer C. W., Hawari J., Samson R. Influence of environmental factors on 2,4-dichlorophenoxyacetic acid degradation by Pseudomonas cepacia isolated from peat. Arch Microbiol. 1990;154(4):317–322. doi: 10.1007/BF00276525. [DOI] [PubMed] [Google Scholar]
  8. Kado C. I., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol. 1981 Mar;145(3):1365–1373. doi: 10.1128/jb.145.3.1365-1373.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kolenc R. J., Inniss W. E., Glick B. R., Robinson C. W., Mayfield C. I. Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl Environ Microbiol. 1988 Mar;54(3):638–641. doi: 10.1128/aem.54.3.638-641.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kurkela S., Lehväslaiho H., Palva E. T., Teeri T. H. Cloning, nucleotide sequence and characterization of genes encoding naphthalene dioxygenase of Pseudomonas putida strain NCIB9816. Gene. 1988 Dec 20;73(2):355–362. doi: 10.1016/0378-1119(88)90500-8. [DOI] [PubMed] [Google Scholar]
  11. Lal B., Khanna S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol. 1996 Oct;81(4):355–362. doi: 10.1111/j.1365-2672.1996.tb03519.x. [DOI] [PubMed] [Google Scholar]
  12. Malachowsky K. J., Phelps T. J., Teboli A. B., Minnikin D. E., White D. C. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by rhodococcus species. Appl Environ Microbiol. 1994 Feb;60(2):542–548. doi: 10.1128/aem.60.2.542-548.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakai C., Kagamiyama H., Nozaki M., Nakazawa T., Inouye S., Ebina Y., Nakazawa A. Complete nucleotide sequence of the metapyrocatechase gene on the TOI plasmid of Pseudomonas putida mt-2. J Biol Chem. 1983 Mar 10;258(5):2923–2928. [PubMed] [Google Scholar]
  14. Simon M. J., Osslund T. D., Saunders R., Ensley B. D., Suggs S., Harcourt A., Suen W. C., Cruden D. L., Gibson D. T., Zylstra G. J. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene. 1993 May 15;127(1):31–37. doi: 10.1016/0378-1119(93)90613-8. [DOI] [PubMed] [Google Scholar]
  15. Sotsky J. B., Greer C. W., Atlas R. M. Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. Can J Microbiol. 1994 Nov;40(11):981–985. doi: 10.1139/m94-157. [DOI] [PubMed] [Google Scholar]
  16. Takizawa N., Kaida N., Torigoe S., Moritani T., Sawada T., Satoh S., Kiyohara H. Identification and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase and polycyclic aromatic hydrocarbon dihydrodiol dehydrogenase in Pseudomonas putida OUS82. J Bacteriol. 1994 Apr;176(8):2444–2449. doi: 10.1128/jb.176.8.2444-2449.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wang Y., Garnon J., Labbé D., Bergeron H., Lau P. C. Sequence and expression of the bpdC1C2BADE genes involved in the initial steps of biphenyl/chlorobiphenyl degradation by Rhodococcus sp. M5. Gene. 1995 Oct 16;164(1):117–122. doi: 10.1016/0378-1119(95)00448-f. [DOI] [PubMed] [Google Scholar]
  18. Whyte L. G., Greer C. W., Inniss W. E. Assessment of the biodegradation potential of psychrotrophic microorganisms. Can J Microbiol. 1996 Feb;42(2):99–106. doi: 10.1139/m96-016. [DOI] [PubMed] [Google Scholar]
  19. Wyndham R. C., Cashore A. E., Nakatsu C. H., Peel M. C. Catabolic transposons. Biodegradation. 1994 Dec;5(3-4):323–342. doi: 10.1007/BF00696468. [DOI] [PubMed] [Google Scholar]
  20. Zhang L., Kerr A. Rapid purification of Ti plasmids from Agrobacterium by ethidium bromide treatment and phenol extraction. Lett Appl Microbiol. 1993 May;16(5):265–268. doi: 10.1111/j.1472-765x.1993.tb01415.x. [DOI] [PubMed] [Google Scholar]
  21. van Beilen J. B., Wubbolts M. G., Witholt B. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation. 1994 Dec;5(3-4):161–174. doi: 10.1007/BF00696457. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES