Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Oct;63(10):3752–3756. doi: 10.1128/aem.63.10.3752-3756.1997

Isolation and overexpression of a gene encoding an extracellular beta-(1,3-1,4)-glucanase from Streptococcus bovis JB1.

M S Ekinci 1, S I McCrae 1, H J Flint 1
PMCID: PMC168684  PMID: 9327538

Abstract

Streptococcus bovis JB1 was found to produce a 25-kDa extracellular enzyme active against beta-(1,3-1,4)-glucans. A gene was isolated encoding a specific beta-(1,3-1,4)-glucanase that corresponds to this size and belongs to glycoside hydrolase family 16. A 4- to 10-fold increase in supernatant beta-glucanase activity was obtained when the cloned beta-glucanase gene was reintroduced into S. bovis JB1 by use of constructs based on the plasmid vector pTRW10 or pIL253. The beta-(1,3-1,4)-glucanase gene was also expressed upon introduction of the pTRW10 construct pTRWL1R into Lactococcus lactis IL2661 and Enterococcus faecalis JH2-SS, although extracellular activity was 8- to 50-fold lower than that in S. bovis JB1. The beta-(1,3-1,4)-glucanase purified from the culture supernatant of S. bovis JB1 carrying pTRWL1R showed a K(m) of 2.8 mg per ml and a Vmax of 338 mumol of glucose equivalents per min per mg of protein with barley beta-glucan as the substrate. The S. bovis beta-(1,3-1,4)-glucanase may contribute to the ability of this bacterium to utilize starch by degrading structural polysaccharides present in endosperm cell walls.

Full Text

The Full Text of this article is available as a PDF (412.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brehm J. K., Chambers S. P., Brown K. J., Atkinson T., Minton N. P. Molecular cloning and nucleotide sequence determination of the Bacillus stearothermophilus NCA 1503 superoxide dismutase gene and its overexpression in Escherichia coli. Appl Microbiol Biotechnol. 1991 Dec;36(3):358–363. doi: 10.1007/BF00208156. [DOI] [PubMed] [Google Scholar]
  2. Campanile C., Forlani G., Basso A. L., Marasco R., Ricca E., Sacco M., Ferrara L., De Felice M. Identification and characterization of the proBA operon of Streptococcus bovis. Appl Environ Microbiol. 1993 Feb;59(2):519–522. doi: 10.1128/aem.59.2.519-522.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clark R. G., Hu Y. J., Hynes M. F., Salmon R. K., Cheng K. J. Cloning and expression of an amylase gene from Streptococcus bovis in Escherichia coli. Arch Microbiol. 1992;157(3):201–204. doi: 10.1007/BF00245149. [DOI] [PubMed] [Google Scholar]
  4. Cotta M. A., Whitehead T. R. Regulation and cloning of the gene encoding amylase activity of the ruminal bacterium Streptococcus bovis. Appl Environ Microbiol. 1993 Jan;59(1):189–196. doi: 10.1128/aem.59.1.189-196.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fincher G. B., Lock P. A., Morgan M. M., Lingelbach K., Wettenhall R. E., Mercer J. F., Brandt A., Thomsen K. K. Primary structure of the (1-->3,1-->4)-beta-D-glucan 4-glucohydrolase from barley aleurone. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2081–2085. doi: 10.1073/pnas.83.7.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flint H. J., Martin J., McPherson C. A., Daniel A. S., Zhang J. X. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J Bacteriol. 1993 May;175(10):2943–2951. doi: 10.1128/jb.175.10.2943-2951.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flint H. J., McPherson C. A., Bisset J. Molecular cloning of genes from Ruminococcus flavefaciens encoding xylanase and beta(1-3,1-4)glucanase activities. Appl Environ Microbiol. 1989 May;55(5):1230–1233. doi: 10.1128/aem.55.5.1230-1233.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freer S. N. Purification and characterization of the extracellular alpha-amylase from Streptococcus bovis JB1. Appl Environ Microbiol. 1993 May;59(5):1398–1402. doi: 10.1128/aem.59.5.1398-1402.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Graham H., Fadel J. G., Newman C. W., Newman R. K. Effect of pelleting and beta-glucanase supplementation on the ileal and fecal digestibility of a barley-based diet in the pig. J Anim Sci. 1989 May;67(5):1293–1298. doi: 10.2527/jas1989.6751293x. [DOI] [PubMed] [Google Scholar]
  10. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henrissat B., Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1993 Aug 1;293(Pt 3):781–788. doi: 10.1042/bj2930781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hespell R. B., Whitehead T. R. Introduction of Tn916 and pAM beta 1 into Streptococcus bovis JB1 by conjugation. Appl Environ Microbiol. 1991 Sep;57(9):2710–2713. doi: 10.1128/aem.57.9.2710-2713.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones B. A., Muck R. E., Ricke S. C. Selection and application of Streptococcus bovis as a silage inoculant. Appl Environ Microbiol. 1991 Oct;57(10):3000–3005. doi: 10.1128/aem.57.10.3000-3005.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lever M. Carbohydrate determination with 4-hydroxybenzoic acid hydrazide (PAHBAH): effect of bismuth on the reaction. Anal Biochem. 1977 Jul;81(1):21–27. doi: 10.1016/0003-2697(77)90594-2. [DOI] [PubMed] [Google Scholar]
  15. Macrina F. L., Tobian J. A., Jones K. R., Evans R. P., Clewell D. B. A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene. 1982 Oct;19(3):345–353. doi: 10.1016/0378-1119(82)90025-7. [DOI] [PubMed] [Google Scholar]
  16. McAllister T. A., Cheng K. J., Rode L. M., Forsberg C. W. Digestion of barley, maize, and wheat by selected species of ruminal bacteria. Appl Environ Microbiol. 1990 Oct;56(10):3146–3153. doi: 10.1128/aem.56.10.3146-3153.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olsen O., Borriss R., Simon O., Thomsen K. K. Hybrid Bacillus (1-3,1-4)-beta-glucanases: engineering thermostable enzymes by construction of hybrid genes. Mol Gen Genet. 1991 Feb;225(2):177–185. doi: 10.1007/BF00269845. [DOI] [PubMed] [Google Scholar]
  18. Russell J. B., Baldwin R. L. Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms. Appl Environ Microbiol. 1978 Aug;36(2):319–329. doi: 10.1128/aem.36.2.319-329.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  20. Satoh E., Niimura Y., Uchimura T., Kozaki M., Komagata K. Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli. Appl Environ Microbiol. 1993 Nov;59(11):3669–3673. doi: 10.1128/aem.59.11.3669-3673.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Simon D., Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 1988 Apr;70(4):559–566. doi: 10.1016/0300-9084(88)90093-4. [DOI] [PubMed] [Google Scholar]
  22. Slyter L. L. Influence of acidosis on rumen function. J Anim Sci. 1976 Oct;43(4):910–929. doi: 10.2527/jas1976.434910x. [DOI] [PubMed] [Google Scholar]
  23. Teather R. M., Erfle J. D. DNA sequence of a Fibrobacter succinogenes mixed-linkage beta-glucanase (1,3-1,4-beta-D-glucan 4-glucanohydrolase) gene. J Bacteriol. 1990 Jul;172(7):3837–3841. doi: 10.1128/jb.172.7.3837-3841.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whitehead T. R., Cotta M. A. Development of a DNA probe for Streptococcus bovis by using a cloned amylase gene. J Clin Microbiol. 1993 Sep;31(9):2387–2391. doi: 10.1128/jcm.31.9.2387-2391.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Whitehead T. R., Flint H. J. Heterologous expression of an endoglucanase gene (endA) from the ruminal anaerobe Ruminococcus flavefaciens 17 in Streptococcus bovis and Streptococcus sanguis. FEMS Microbiol Lett. 1995 Feb 15;126(2):165–169. doi: 10.1111/j.1574-6968.1995.tb07411.x. [DOI] [PubMed] [Google Scholar]
  26. Zhang J. X., Martin J., Flint H. J. Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol Gen Genet. 1994 Oct 28;245(2):260–264. doi: 10.1007/BF00283275. [DOI] [PubMed] [Google Scholar]
  27. von Heijne G. Transcending the impenetrable: how proteins come to terms with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):307–333. doi: 10.1016/0304-4157(88)90013-5. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES