Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Oct;63(10):3810–3817. doi: 10.1128/aem.63.10.3810-3817.1997

Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber.

H J Busscher 1, C G van Hoogmoed 1, G I Geertsema-Doornbusch 1, M van der Kuijl-Booij 1, H C van der Mei 1
PMCID: PMC168689  PMID: 9327543

Abstract

The adhesion of yeasts, two Candida albicans and two Candida tropicalis strains isolated from naturally colonized voice prostheses, to silicone rubber with and without a salivary conditioning film in the absence and presence of adhering Streptococcus thermophilus B, a biosurfactant-releasing dairy isolate, was studied. Coverage of 1 to 4% of the surface of silicone rubber substrata with adhering S. thermophilus B gave significant reductions in the initial yeast adhesion regardless of the presence of a conditioning film. Mechanistically, this interference in yeast adhesion by S. thermophilus B was not due to direct physical effects but to biosurfactant release by the adhering bacteria, because experiments with S. thermophilus B cells that had released their biosurfactants prior to adhesion to silicone rubber and competition with yeasts did not show interference with initial yeast adhesion. The amounts of biosurfactants released were highest for mid-exponential- and early-stationary-phase bacteria (37 mg.g of cells-1 [dry weight]), but biosurfactants released by stationary-phase bacteria (14 mg.g of cells-1 [dry weight]) were the most surface active. The crude biosurfactants released were mixtures of various components, with a glycolipid-like component being the most surface active. A lipid-enriched biosurfactant fraction reduced the surface tension of an aqueous solution to about 35 mJ.m-2 at a concentration of only 0.5 mg.ml-1. The amount of biosurfactant released per S. thermophilus B cell was estimated to be sufficient to cover approximately 12 times the area of the cross section of the bacterium, making biosurfactant release a powerful defense weapon in the postadhesion competition of the bacterium with microorganisms such as yeasts. Preadsorption of biosurfactants to the silicone rubber prior to allowing yeasts to adhere was as effective against C. albicans GB 1/2 adhesion as covering 1 to 2% of the silicone rubber surface with adhering S. thermophilus B, but a preadsorbed biosurfactant layer was less effective against C. tropicalis GB 9/9.

Full Text

The Full Text of this article is available as a PDF (242.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  2. Blomberg L., Henriksson A., Conway P. L. Inhibition of adhesion of Escherichia coli K88 to piglet ileal mucus by Lactobacillus spp. Appl Environ Microbiol. 1993 Jan;59(1):34–39. doi: 10.1128/aem.59.1.34-39.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Busscher H. J., Geertsema-Doornbusch G. I., van der Mei H. C. Adhesion to silicone rubber of yeasts and bacteria isolated from voice prostheses: influence of salivary conditioning films. J Biomed Mater Res. 1997 Feb;34(2):201–209. doi: 10.1002/(sici)1097-4636(199702)34:2<201::aid-jbm9>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
  4. Cooper D. G., Macdonald C. R., Duff S. J., Kosaric N. Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions. Appl Environ Microbiol. 1981 Sep;42(3):408–412. doi: 10.1128/aem.42.3.408-412.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hawthorn L. A., Reid G. Exclusion of uropathogen adhesion to polymer surfaces by Lactobacillus acidophilus. J Biomed Mater Res. 1990 Jan;24(1):39–46. doi: 10.1002/jbm.820240105. [DOI] [PubMed] [Google Scholar]
  6. Hudault S., Liévin V., Bernet-Camard M. F., Servin A. L. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl Environ Microbiol. 1997 Feb;63(2):513–518. doi: 10.1128/aem.63.2.513-518.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Izdebski K., Ross J. C., Lee S. Fungal colonization of tracheoesophageal voice prosthesis. Laryngoscope. 1987 May;97(5):594–597. doi: 10.1288/00005537-198705000-00011. [DOI] [PubMed] [Google Scholar]
  8. Mahieu H. F., van Saene H. K., Rosingh H. J., Schutte H. K. Candida vegetations on silicone voice prostheses. Arch Otolaryngol Head Neck Surg. 1986 Mar;112(3):321–325. doi: 10.1001/archotol.1986.03780030085017. [DOI] [PubMed] [Google Scholar]
  9. Mahieu H. F., van Saene J. J., den Besten J., van Saene H. K. Oropharynx decontamination preventing Candida vegetation on voice prostheses. Arch Otolaryngol Head Neck Surg. 1986 Oct;112(10):1090–1092. doi: 10.1001/archotol.1986.03780100078012. [DOI] [PubMed] [Google Scholar]
  10. Millsap K., Reid G., van der Mei H. C., Busscher H. J. Displacement of Enterococcus faecalis from hydrophobic and hydrophilic substrata by Lactobacillus and Streptococcus spp. as studied in a parallel plate flow chamber. Appl Environ Microbiol. 1994 Jun;60(6):1867–1874. doi: 10.1128/aem.60.6.1867-1874.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Minagi S., Miyake Y., Inagaki K., Tsuru H., Suginaka H. Hydrophobic interaction in Candida albicans and Candida tropicalis adherence to various denture base resin materials. Infect Immun. 1985 Jan;47(1):11–14. doi: 10.1128/iai.47.1.11-14.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Neu T. R. Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev. 1996 Mar;60(1):151–166. doi: 10.1128/mr.60.1.151-166.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Neu T. R., Van der Mei H. C., Busscher H. J., Dijk F., Verkerke G. J. Biodeterioration of medical-grade silicone rubber used for voice prostheses: a SEM study. Biomaterials. 1993 May;14(6):459–464. doi: 10.1016/0142-9612(93)90149-v. [DOI] [PubMed] [Google Scholar]
  14. Neu T. R., Verkerke G. J., Herrmann I. F., Schutte H. K., Van der Mei H. C., Busscher H. J. Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility. J Appl Bacteriol. 1994 May;76(5):521–528. doi: 10.1111/j.1365-2672.1994.tb01111.x. [DOI] [PubMed] [Google Scholar]
  15. Pitt W. G., McBride M. O., Barton A. J., Sagers R. D. Air-water interface displaces adsorbed bacteria. Biomaterials. 1993 Jul;14(8):605–608. doi: 10.1016/0142-9612(93)90179-6. [DOI] [PubMed] [Google Scholar]
  16. Reid G., Bruce A. W., McGroarty J. A., Cheng K. J., Costerton J. W. Is there a role for lactobacilli in prevention of urogenital and intestinal infections? Clin Microbiol Rev. 1990 Oct;3(4):335–344. doi: 10.1128/cmr.3.4.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reiling H. E., Thanei-Wyss U., Guerra-Santos L. H., Hirt R., Käppeli O., Fiechter A. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Appl Environ Microbiol. 1986 May;51(5):985–989. doi: 10.1128/aem.51.5.985-989.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Van Den Hoogen F. J., Oudes M. J., Hombergen G., Nijdam H. F., Manni J. J. The Groningen, Nijdam and Provox voice prostheses: a prospective clinical comparison based on 845 replacements. Acta Otolaryngol. 1996 Jan;116(1):119–124. doi: 10.3109/00016489609137724. [DOI] [PubMed] [Google Scholar]
  19. Van Oss C. J., Gillman C. F. Phagocytosis as a surface phenomenon. Contact angles and phagocytosis of non-opsonized bacteria. J Reticuloendothel Soc. 1972 Sep;12(3):283–292. [PubMed] [Google Scholar]
  20. Vissink A., Waterman H. A., s-Gravenmade E. J., Panders A. K., Vermey A. Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide. J Oral Pathol. 1984 Feb;13(1):22–28. doi: 10.1111/j.1600-0714.1984.tb01397.x. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES