Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Oct;63(10):3818–3824. doi: 10.1128/aem.63.10.3818-3824.1997

The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.

J I Park 1, C M Grant 1, P V Attfield 1, I W Dawes 1
PMCID: PMC168690  PMID: 9327544

Abstract

The ability of cells to survive freezing and thawing is expected to depend on the physiological conditions experienced prior to freezing. We examined factors affecting yeast cell survival during freeze-thaw stress, including those associated with growth phase, requirement for mitochondrial functions, and prior stress treatment(s), and the role played by relevant signal transduction pathways. The yeast Saccharomyces cerevisiae was frozen at -20 degrees C for 2 h (cooling rate, less than 4 degrees C min-1) and thawed on ice for 40 min. Supercooling occurred without reducing cell survival and was followed by freezing. Loss of viability was proportional to the freezing duration, indicating that freezing is the main determinant of freeze-thaw damage. Regardless of the carbon source used, the wild-type strain and an isogenic petite mutant ([rho 0]) showed the same pattern of freeze-thaw tolerance throughout growth, i.e., high resistance during lag phase and low resistance during log phase, indicating that the response to freeze-thaw stress is growth phase specific and not controlled by glucose repression. In addition, respiratory ability and functional mitochondria are necessary to confer full resistance to freeze-thaw stress. Both nitrogen and carbon source starvation led to freeze-thaw tolerance. The use of strains affected in the RAS-cyclic AMP (RAS-cAMP) pathway or supplementation of an rca1 mutant (defective in the cAMP phosphodiesterase gene) with cAMP showed that the freeze-thaw response of yeast is under the control of the RAS-cAMP pathway. Yeast did not adapt to freeze-thaw stress following repeated freeze-thaw treatment with or without a recovery period between freeze-thaw cycles, nor could it adapt following pretreatment by cold shock. However, freeze-thaw tolerance of yeast cells was induced during fermentative and respiratory growth by pretreatment with H2O2, cycloheximide, mild heat shock, or NaCl, indicating that cross protection between freeze-thaw stress and a limited number of other types of stress exists.

Full Text

The Full Text of this article is available as a PDF (214.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bissinger P. H., Wieser R., Hamilton B., Ruis H. Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway. Mol Cell Biol. 1989 Mar;9(3):1309–1315. doi: 10.1128/mcb.9.3.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boy-Marcotte E., Garreau H., Jacquet M. Cyclic AMP controls the switch between division cycle and resting state programs in response to ammonium availability in Saccharomyces cerevisiae. Yeast. 1987 Jun;3(2):85–93. doi: 10.1002/yea.320030205. [DOI] [PubMed] [Google Scholar]
  3. Broach J. R. RAS genes in Saccharomyces cerevisiae: signal transduction in search of a pathway. Trends Genet. 1991 Jan;7(1):28–33. doi: 10.1016/0168-9525(91)90018-l. [DOI] [PubMed] [Google Scholar]
  4. Cannon J. F., Gibbs J. B., Tatchell K. Suppressors of the ras2 mutation of Saccharomyces cerevisiae. Genetics. 1986 Jun;113(2):247–264. doi: 10.1093/genetics/113.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cannon J. F., Tatchell K. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol. 1987 Aug;7(8):2653–2663. doi: 10.1128/mcb.7.8.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chowdhury S., Smith K. W., Gustin M. C. Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J Cell Biol. 1992 Aug;118(3):561–571. doi: 10.1083/jcb.118.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collinson L. P., Dawes I. W. Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol. 1992 Feb;138(2):329–335. doi: 10.1099/00221287-138-2-329. [DOI] [PubMed] [Google Scholar]
  8. Coote P. J., Cole M. B., Jones M. V. Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH. J Gen Microbiol. 1991 Jul;137(7):1701–1708. doi: 10.1099/00221287-137-7-1701. [DOI] [PubMed] [Google Scholar]
  9. Craig E. A., Gross C. A. Is hsp70 the cellular thermometer? Trends Biochem Sci. 1991 Apr;16(4):135–140. doi: 10.1016/0968-0004(91)90055-z. [DOI] [PubMed] [Google Scholar]
  10. Flattery-O'Brien J., Collinson L. P., Dawes I. W. Saccharomyces cerevisiae has an inducible response to menadione which differs from that to hydrogen peroxide. J Gen Microbiol. 1993 Mar;139(3):501–507. doi: 10.1099/00221287-139-3-501. [DOI] [PubMed] [Google Scholar]
  11. Grant C. M., MacIver F. H., Dawes I. W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet. 1996 May;29(6):511–515. doi: 10.1007/BF02426954. [DOI] [PubMed] [Google Scholar]
  12. Hermes-Lima M., Storey K. B. Antioxidant defenses in the tolerance of freezing and anoxia by garter snakes. Am J Physiol. 1993 Sep;265(3 Pt 2):R646–R652. doi: 10.1152/ajpregu.1993.265.3.R646. [DOI] [PubMed] [Google Scholar]
  13. Hino A., Mihara K., Nakashima K., Takano H. Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts. Appl Environ Microbiol. 1990 May;56(5):1386–1391. doi: 10.1128/aem.56.5.1386-1391.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iwahashi H., Obuchi K., Fujii S., Komatsu Y. The correlative evidence suggesting that trehalose stabilizes membrane structure in the yeast Saccharomyces cerevisiae. Cell Mol Biol (Noisy-le-grand) 1995 Sep;41(6):763–769. [PubMed] [Google Scholar]
  15. Jamieson D. J. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. J Bacteriol. 1992 Oct;174(20):6678–6681. doi: 10.1128/jb.174.20.6678-6681.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones P. G., Inouye M. The cold-shock response--a hot topic. Mol Microbiol. 1994 Mar;11(5):811–818. doi: 10.1111/j.1365-2958.1994.tb00359.x. [DOI] [PubMed] [Google Scholar]
  17. Kim J., Alizadeh P., Harding T., Hefner-Gravink A., Klionsky D. J. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications. Appl Environ Microbiol. 1996 May;62(5):1563–1569. doi: 10.1128/aem.62.5.1563-1569.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Komatsu Y., Kaul S. C., Iwahashi H., Obuchi K. Do heat shock proteins provide protection against freezing? FEMS Microbiol Lett. 1990 Oct;60(1-2):159–162. doi: 10.1016/0378-1097(90)90364-v. [DOI] [PubMed] [Google Scholar]
  19. Kondo K., Inouye M. TIP 1, a cold shock-inducible gene of Saccharomyces cerevisiae. J Biol Chem. 1991 Sep 15;266(26):17537–17544. [PubMed] [Google Scholar]
  20. Lewis J. G., Learmonth R. P., Watson K. Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology. 1995 Mar;141(Pt 3):687–694. doi: 10.1099/13500872-141-3-687. [DOI] [PubMed] [Google Scholar]
  21. Lewis J. G., Learmonth R. P., Watson K. Role of growth phase and ethanol in freeze-thaw stress resistance of Saccharomyces cerevisiae. Appl Environ Microbiol. 1993 Apr;59(4):1065–1071. doi: 10.1128/aem.59.4.1065-1071.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mager W. H., Ferreira P. M. Stress response of yeast. Biochem J. 1993 Feb 15;290(Pt 1):1–13. doi: 10.1042/bj2900001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mazur P. Cryobiology: the freezing of biological systems. Science. 1970 May 22;168(3934):939–949. doi: 10.1126/science.168.3934.939. [DOI] [PubMed] [Google Scholar]
  24. McKersie B. D., Chen Y., de Beus M., Bowley S. R., Bowler C., Inzé D., D'Halluin K., Botterman J. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 1993 Dec;103(4):1155–1163. doi: 10.1104/pp.103.4.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Márquez J. A., Serrano R. Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett. 1996 Mar 11;382(1-2):89–92. doi: 10.1016/0014-5793(96)00157-3. [DOI] [PubMed] [Google Scholar]
  26. Schindler D., Davies J. Inhibitors of macromolecular synthesis in yeast. Methods Cell Biol. 1975;12:17–38. doi: 10.1016/s0091-679x(08)60949-8. [DOI] [PubMed] [Google Scholar]
  27. Thevelein J. M. Signal transduction in yeast. Yeast. 1994 Dec;10(13):1753–1790. doi: 10.1002/yea.320101308. [DOI] [PubMed] [Google Scholar]
  28. Toner M., Cravalho E. G., Karel M. Cellular response of mouse oocytes to freezing stress: prediction of intracellular ice formation. J Biomech Eng. 1993 May;115(2):169–174. doi: 10.1115/1.2894117. [DOI] [PubMed] [Google Scholar]
  29. Varela J. C., Mager W. H. Response of Saccharomyces cerevisiae to changes in external osmolarity. Microbiology. 1996 Apr;142(Pt 4):721–731. doi: 10.1099/00221287-142-4-721. [DOI] [PubMed] [Google Scholar]
  30. Werner-Washburne M., Braun E. L., Crawford M. E., Peck V. M. Stationary phase in Saccharomyces cerevisiae. Mol Microbiol. 1996 Mar;19(6):1159–1166. doi: 10.1111/j.1365-2958.1996.tb02461.x. [DOI] [PubMed] [Google Scholar]
  31. Werner-Washburne M., Braun E., Johnston G. C., Singer R. A. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol Rev. 1993 Jun;57(2):383–401. doi: 10.1128/mr.57.2.383-401.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES