Abstract
A mixed microbial culture capable of metabolizing deoxynivalenol was obtained from soil samples by an enrichment culture procedure. A bacterium (strain E3-39) isolated from the enrichment culture completely removed exogenously supplied deoxynivalenol from culture medium after incubation for 1 day. On the basis of morphological, physiological, and phylogenetic studies, strain E3-39 was classified as a bacterium belonging to the Agrobacterium-Rhizobium group. Thin-layer chromatographic analysis indicated the presence of one major and two minor metabolites of deoxynivalenol in ethyl acetate extracts of the E3-39 culture filtrates. The main metabolite was identified as 3-keto-4-deoxynivalenol by mass spectroscopy and 1H and 13C nuclear magnetic resonance analysis. The immunosuppressive toxicity of 3-keto-4-deoxynivalenol was evaluated by means of a bioassay based on the mitogen-induced and mitogen-free proliferations of mouse spleen lymphocytes. This compound exhibited a remarkably decreased (to less than one tenth) immunosuppressive toxicity relative to deoxynivalenol, indicating that the 3-OH group in deoxynivalenol is likely to be involved in exerting its immunosuppressive toxicity. Strain E3-39 was also capable of transforming 3-acetyldeoxynivalenol but not nivalenol and fusarenon-X.
Full Text
The Full Text of this article is available as a PDF (326.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbas H. K., Mirocha C. J., Meronuck R. A., Pokorny J. D., Gould S. L., Kommedahl T. Mycotoxins and Fusarium spp. associated with infected ears of corn in Minnesota. Appl Environ Microbiol. 1988 Aug;54(8):1930–1933. doi: 10.1128/aem.54.8.1930-1933.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beeton S., Bull A. T. Biotransformation and detoxification of T-2 toxin by soil and freshwater bacteria. Appl Environ Microbiol. 1989 Jan;55(1):190–197. doi: 10.1128/aem.55.1.190-197.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Côté L. M., Dahlem A. M., Yoshizawa T., Swanson S. P., Buck W. B. Excretion of deoxynivalenol and its metabolite in milk, urine, and feces of lactating dairy cows. J Dairy Sci. 1986 Sep;69(9):2416–2423. doi: 10.3168/jds.S0022-0302(86)80681-6. [DOI] [PubMed] [Google Scholar]
- Ehrlich K. C., Daigle K. W. Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochim Biophys Acta. 1987 Feb 20;923(2):206–213. doi: 10.1016/0304-4165(87)90005-5. [DOI] [PubMed] [Google Scholar]
- Forsyth D. M., Yoshizawa T., Morooka N., Tuite J. Emetic and refusal activity of deoxynivalenol to swine. Appl Environ Microbiol. 1977 Nov;34(5):547–552. doi: 10.1128/aem.34.5.547-552.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friend S. C., Babiuk L. A., Schiefer H. B. The effects of dietary T-2 toxin on the immunological function and herpes simplex reactivation in Swiss mice. Toxicol Appl Pharmacol. 1983 Jun 30;69(2):234–244. doi: 10.1016/0041-008x(83)90304-6. [DOI] [PubMed] [Google Scholar]
- Fujimoto H., Nakayama Y., Yamazaki M. Identification of immunosuppressive components of a mushroom, Lactarius flavidulus. Chem Pharm Bull (Tokyo) 1993 Apr;41(4):654–658. doi: 10.1248/cpb.41.654. [DOI] [PubMed] [Google Scholar]
- Higgins D. G., Bleasby A. J., Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992 Apr;8(2):189–191. doi: 10.1093/bioinformatics/8.2.189. [DOI] [PubMed] [Google Scholar]
- Lauren D. R., Greenhalgh R. Simultaneous analysis of nivalenol and deoxynivalenol in cereals by liquid chromatography. J Assoc Off Anal Chem. 1987 May-Jun;70(3):479–483. [PubMed] [Google Scholar]
- Lee U. S., Jang H. S., Tanaka T., Toyasaki N., Sugiura Y., Oh Y. J., Cho C. M., Ueno Y. Mycological survey of Korean cereals and production of mycotoxins by Fusarium isolates. Appl Environ Microbiol. 1986 Dec;52(6):1258–1260. doi: 10.1128/aem.52.6.1258-1260.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lun A. K., Moran E. T., Jr, Young L. G., McMillan E. G. Disappearance of deoxynivalenol from digesta progressing along the chicken's gastrointestinal tract after intubation with feed containing contaminated corn. Bull Environ Contam Toxicol. 1988 Mar;40(3):317–324. doi: 10.1007/BF01689086. [DOI] [PubMed] [Google Scholar]
- Lun A. K., Young L. G., Lumsden J. H. The effects of vomitoxin and feed intake on the performance and blood characteristics of young pigs. J Anim Sci. 1985 Nov;61(5):1178–1185. doi: 10.2527/jas1985.6151178x. [DOI] [PubMed] [Google Scholar]
- Minervini F., Dong W., Pestka J. In vitro vomitoxin exposure alters IgA and IgM secretion by CH12LX B cells. Relationship to proliferation and macromolecular synthesis. Mycopathologia. 1993 Jan;121(1):33–40. doi: 10.1007/BF01103352. [DOI] [PubMed] [Google Scholar]
- Mirocha C. J., Pathre S. V., Schauerhamer B., Christensen C. M. Natural occurrence of Fusarium toxins in feedstuff. Appl Environ Microbiol. 1976 Oct;32(4):553–556. doi: 10.1128/aem.32.4.553-556.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramakrishna Y., Bhat R. V., Ravindranath V. Production of deoxynivalenol by Fusarium isolates from samples of wheat associated with a human mycotoxicosis outbreak and from sorghum cultivars. Appl Environ Microbiol. 1989 Oct;55(10):2619–2620. doi: 10.1128/aem.55.10.2619-2620.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbana-Barnat S., Lafarge-Frayssinet C., Cohen H., Neish G. A., Frayssinet C. Immunosuppressive properties of deoxynivalenol. Toxicology. 1988 Feb;48(2):155–166. doi: 10.1016/0300-483x(88)90097-2. [DOI] [PubMed] [Google Scholar]
- Rotter B. A., Prelusky D. B., Pestka J. J. Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health. 1996 May;48(1):1–34. doi: 10.1080/009841096161447. [DOI] [PubMed] [Google Scholar]
- Sawada H., Ieki H., Oyaizu H., Matsumoto S. Proposal for rejection of Agrobacterium tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Int J Syst Bacteriol. 1993 Oct;43(4):694–702. doi: 10.1099/00207713-43-4-694. [DOI] [PubMed] [Google Scholar]
- Ueno Y., Nakayama K., Ishii K., Tashiro F., Minoda Y., Omori T., Komagata K. Metabolism of T-2 toxin in Curtobacterium sp. strain 114-2. Appl Environ Microbiol. 1983 Jul;46(1):120–127. doi: 10.1128/aem.46.1.120-127.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagi M., Yamasato K. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett. 1993 Feb 15;107(1):115–120. doi: 10.1111/j.1574-6968.1993.tb06014.x. [DOI] [PubMed] [Google Scholar]
- van Berkum P., Beyene D., Eardly B. D. Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol. 1996 Jan;46(1):240–244. doi: 10.1099/00207713-46-1-240. [DOI] [PubMed] [Google Scholar]