Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Oct;63(10):3902–3910. doi: 10.1128/aem.63.10.3902-3910.1997

Genes encoding two different beta-glucosidases of Thermoanaerobacter brockii are clustered in a common operon.

R Breves 1, K Bronnenmeier 1, N Wild 1, F Lottspeich 1, W L Staudenbauer 1, J Hofemeister 1
PMCID: PMC168700  PMID: 9327554

Abstract

A 5.9-kb fragment of chromosomal DNA coding for beta-glucosidase activity of the thermophilic anaerobe Thermoanaerobacter brockii was sequenced. Two genes, cglT and xglS, encoding a cellodextrin-cleaving beta-glucosidase and a xylodextrin-degrading xylo-beta-glucosidase, respectively, were located directly adjacent to each other. The 5' region contained two additional genes, cglF and cglG, whose products exhibited similarity to integral membrane proteins of metabolite transport systems. The two beta-glucosidases, CglT and XglS, with deduced molecular masses of 52 and 81 kDa, belong to different families of glycosyl hydrolases. Both enzymes were overexpressed in Escherichia coli and could be detected after protein gel electrophoresis and activity staining. The enzyme CglT was purified by fast protein liquid chromatography and identified by N-terminal sequencing. The enzyme was thermostable at 60 degrees C for at least 24 h, and the temperature optimum was 75 degrees C. The ki for glucose inhibition was calculated to 200 mM. The enzyme released glucose from the nonreducing end of beta-1,4-cello oligomers as well as from various disaccharides. CglT was active on glucosides, galactosides and on fucosides, while XglS cleaved beta-glucosides and beta-xylosides as well. The cglT gene was also expressed in Bacillus subtilis, and the enzyme was mainly intracellular during exponential growth but was efficiently released into the supernatant after cultures entered the stationary phase.

Full Text

The Full Text of this article is available as a PDF (726.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahl H., Burchhardt G., Wienecke A. Nucleotide sequence of two Clostridium thermosulfurogenes EM1 genes homologous to Escherichia coli genes encoding integral membrane components of binding protein-dependent transport systems. FEMS Microbiol Lett. 1991 Jun 1;65(1):83–87. doi: 10.1016/0378-1097(91)90476-q. [DOI] [PubMed] [Google Scholar]
  2. Bause E., Legler G. Isolation and structure of a tryptic glycopeptide from the active site of beta-glucosidase A3 from Aspergillus wentii. Biochim Biophys Acta. 1980 Dec 16;626(2):459–465. doi: 10.1016/0005-2795(80)90142-7. [DOI] [PubMed] [Google Scholar]
  3. Castle L. A., Smith K. D., Morris R. O. Cloning and sequencing of an Agrobacterium tumefaciens beta-glucosidase gene involved in modifying a vir-inducing plant signal molecule. J Bacteriol. 1992 Mar;174(5):1478–1486. doi: 10.1128/jb.174.5.1478-1486.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Conrad B., Savchenko R. S., Breves R., Hofemeister J. A T7 promoter-specific, inducible protein expression system for Bacillus subtilis. Mol Gen Genet. 1996 Feb 5;250(2):230–236. doi: 10.1007/BF02174183. [DOI] [PubMed] [Google Scholar]
  5. Dassa E., Hofnung M. Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein-dependent transport systems. EMBO J. 1985 Sep;4(9):2287–2293. doi: 10.1002/j.1460-2075.1985.tb03928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dwivedi P. P., Gibbs M. D., Saul D. J., Bergquist P. L. Cloning, sequencing and overexpression in Escherichia coli of a xylanase gene, xynA from the thermophilic bacterium Rt8B.4 genus Caldicellulosiruptor. Appl Microbiol Biotechnol. 1996 Mar;45(1-2):86–93. doi: 10.1007/s002530050653. [DOI] [PubMed] [Google Scholar]
  7. Furuchi T., Kashiwagi K., Kobayashi H., Igarashi K. Characteristics of the gene for a spermidine and putrescine transport system that maps at 15 min on the Escherichia coli chromosome. J Biol Chem. 1991 Nov 5;266(31):20928–20933. [PubMed] [Google Scholar]
  8. González-Candelas L., Aristoy M. C., Polaina J., Flors A. Cloning and characterization of two genes from Bacillus polymyxa expressing beta-glucosidase activity in Escherichia coli. Appl Environ Microbiol. 1989 Dec;55(12):3173–3177. doi: 10.1128/aem.55.12.3173-3177.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. González-Candelas L., Ramón D., Polaina J. Sequences and homology analysis of two genes encoding beta-glucosidases from Bacillus polymyxa. Gene. 1990 Oct 30;95(1):31–38. doi: 10.1016/0378-1119(90)90410-s. [DOI] [PubMed] [Google Scholar]
  10. Gräbnitz F., Rücknagel K. P., Seiss M., Staudenbauer W. L. Nucleotide sequence of the Clostridium thermocellum bgIB gene encoding thermostable beta-glucosidase B: homology to fungal beta-glucosidases. Mol Gen Genet. 1989 May;217(1):70–76. doi: 10.1007/BF00330944. [DOI] [PubMed] [Google Scholar]
  11. Gräbnitz F., Seiss M., Rücknagel K. P., Staudenbauer W. L. Structure of the beta-glucosidase gene bglA of Clostridium thermocellum. Sequence analysis reveals a superfamily of cellulases and beta-glycosidases including human lactase/phlorizin hydrolase. Eur J Biochem. 1991 Sep 1;200(2):301–309. doi: 10.1111/j.1432-1033.1991.tb16186.x. [DOI] [PubMed] [Google Scholar]
  12. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 1991 Dec 1;280(Pt 2):309–316. doi: 10.1042/bj2800309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kengen S. W., Luesink E. J., Stams A. J., Zehnder A. J. Purification and characterization of an extremely thermostable beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur J Biochem. 1993 Apr 1;213(1):305–312. doi: 10.1111/j.1432-1033.1993.tb17763.x. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Le Coq D., Lindner C., Krüger S., Steinmetz M., Stülke J. New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol. 1995 Mar;177(6):1527–1535. doi: 10.1128/jb.177.6.1527-1535.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
  17. Marri L., Valentini S., Venditti D. Cloning and nucleotide sequence of the bglA gene from Erwinia herbicola and expression of beta-glucosidase activity in Escherichia coli. FEMS Microbiol Lett. 1995 May 1;128(2):135–138. doi: 10.1111/j.1574-6968.1995.tb07512.x. [DOI] [PubMed] [Google Scholar]
  18. McCarter J. D., Withers S. G. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol. 1994 Dec;4(6):885–892. doi: 10.1016/0959-440x(94)90271-2. [DOI] [PubMed] [Google Scholar]
  19. Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem. 1965 Sep;240(9):3685–3692. [PubMed] [Google Scholar]
  20. Paavilainen S., Hellman J., Korpela T. Purification, characterization, gene cloning, and sequencing of a new beta-glucosidase from Bacillus circulans subsp. alkalophilus. Appl Environ Microbiol. 1993 Mar;59(3):927–932. doi: 10.1128/aem.59.3.927-932.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Raynal A., Gerbaud C., Francingues M. C., Guerineau M. Sequence and transcription of the beta-glucosidase gene of Kluyveromyces fragilis cloned in Saccharomyces cerevisiae. Curr Genet. 1987;12(3):175–184. doi: 10.1007/BF00436876. [DOI] [PubMed] [Google Scholar]
  22. Russell R. R., Aduse-Opoku J., Sutcliffe I. C., Tao L., Ferretti J. J. A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem. 1992 Mar 5;267(7):4631–4637. [PubMed] [Google Scholar]
  23. Saha B. C., Bothast R. J. Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Appl Environ Microbiol. 1996 Sep;62(9):3165–3170. doi: 10.1128/aem.62.9.3165-3170.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schnetz K., Toloczyki C., Rak B. Beta-glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol. 1987 Jun;169(6):2579–2590. doi: 10.1128/jb.169.6.2579-2590.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sirko A., Hryniewicz M., Hulanicka D., Böck A. Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cysTWAM gene cluster. J Bacteriol. 1990 Jun;172(6):3351–3357. doi: 10.1128/jb.172.6.3351-3357.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vroemen S., Heldens J., Boyd C., Henrissat B., Keen N. T. Cloning and characterization of the bgxA gene from Erwinia chrysanthemi D1 which encodes a beta-glucosidase/xylosidase enzyme. Mol Gen Genet. 1995 Feb 20;246(4):465–477. doi: 10.1007/BF00290450. [DOI] [PubMed] [Google Scholar]
  28. Williams S. G., Greenwood J. A., Jones C. W. Molecular analysis of the lac operon encoding the binding-protein-dependent lactose transport system and beta-galactosidase in Agrobacterium radiobacter. Mol Microbiol. 1992 Jul;6(13):1755–1768. doi: 10.1111/j.1365-2958.1992.tb01348.x. [DOI] [PubMed] [Google Scholar]
  29. el Hassouni M., Chippaux M., Barras F. Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic beta-glucosides. J Bacteriol. 1990 Nov;172(11):6261–6267. doi: 10.1128/jb.172.11.6261-6267.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES