Abstract
The degradation of phenanthrene and pyrene was investigated by using five different wood-decaying fungi. After 63 days of incubation in liquid culture, 13.8 and 4.3% of the [ring U-14C]phenantherene and 2.4 and 1.4% of the [4,5,9,10-14C]pyrene were mineralized by Trametes versicolor and Kuehneromyces mutabilis, respectively. No 14CO2 evolution was detected in either [14C]phenanthrene or [14C]pyrene liquid cultures of Flammulina velutipes, Laetiporus sulphureus, and Agrocybe aegerita. Cultivation in straw cultures demonstrated that, in addition to T. versicolor (15.5%) and K. mutabilis (5.0%), L. sulphureus (10.7%) and A. aegerita (3.7%) were also capable of mineralizing phenanthrene in a period of 63 days. Additionally, K. mutabilis (6.7%), L. sulphureus (4.3%), and A. aegerita (3.3%) mineralized [14C]pyrene in straw cultures. The highest mineralization of [14C] pyrene was detected in straw cultures of T. versicolor (34.1%), which suggested that mineralization of both compounds by fungi may be independent of the number of aromatic rings. Phenanthrene and pyrene metabolites were purified by high-performance liquid chromatography and identified by UV absorption, mass, and 1H nuclear magnetic resonance spectrometry. Fungi capable of mineralizing phenanthrene and pyrene in liquid culture produced enriched metabolites substituted in the K region (C-9,10 position of phenanthrene and C-4,5 position of pyrene), whereas all other fungi investigated produced metabolites substituted in the C-1,2, C-3,4, and C-9,10 positions of phenanthrene and the C-1 position of pyrene.
Full Text
The Full Text of this article is available as a PDF (226.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bezalel L., Hadar Y., Fu P. P., Freeman J. P., Cerniglia C. E. Initial Oxidation Products in the Metabolism of Pyrene, Anthracene, Fluorene, and Dibenzothiophene by the White Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jul;62(7):2554–2559. doi: 10.1128/aem.62.7.2554-2559.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezalel L., Hadar Y., Fu P. P., Freeman J. P., Cerniglia C. E. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996 Jul;62(7):2547–2553. doi: 10.1128/aem.62.7.2547-2553.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumer M. Polycyclic aromatic compounds in nature. Sci Am. 1976 Mar;234(3):35–45. [PubMed] [Google Scholar]
- Bogan B. W., Lamar R. T. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1995 Jul;61(7):2631–2635. doi: 10.1128/aem.61.7.2631-2635.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogan B. W., Lamar R. T. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol. 1996 May;62(5):1597–1603. doi: 10.1128/aem.62.5.1597-1603.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumpus J. A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1989 Jan;55(1):154–158. doi: 10.1128/aem.55.1.154-158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casillas R. P., Crow S. A., Jr, Heinze T. M., Deck J., Cerniglia C. E. Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol. 1996 Apr;16(4):205–215. doi: 10.1007/BF01570023. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E., Kelly D. W., Freeman J. P., Miller D. W. Microbial metabolism of pyrene. Chem Biol Interact. 1986 Feb;57(2):203–216. doi: 10.1016/0009-2797(86)90038-4. [DOI] [PubMed] [Google Scholar]
- Hammel K. E., Gai W. Z., Green B., Moen M. A. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jun;58(6):1832–1838. doi: 10.1128/aem.58.6.1832-1838.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
- Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1988 Oct;54(10):2556–2565. doi: 10.1128/aem.54.10.2556-2565.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lambert M., Kremer S., Sterner O., Anke H. Metabolism of Pyrene by the Basidiomycete Crinipellis stipitaria and Identification of Pyrenequinones and Their Hydroxylated Precursors in Strain JK375. Appl Environ Microbiol. 1994 Oct;60(10):3597–3601. doi: 10.1128/aem.60.10.3597-3601.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lange B., Kremer S., Sterner O., Anke H. Pyrene Metabolism in Crinipellis stipitaria: Identification of trans-4,5-Dihydro-4,5-Dihydroxypyrene and 1-Pyrenylsulfate in Strain JK364. Appl Environ Microbiol. 1994 Oct;60(10):3602–3607. doi: 10.1128/aem.60.10.3602-3607.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martens R., Wetzstein H. G., Zadrazil F., Capelari M., Hoffmann P., Schmeer N. Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol. 1996 Nov;62(11):4206–4209. doi: 10.1128/aem.62.11.4206-4209.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moen M. A., Hammel K. E. Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus. Appl Environ Microbiol. 1994 Jun;60(6):1956–1961. doi: 10.1128/aem.60.6.1956-1961.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sack U., Günther T. Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol. 1993;33(4):269–277. doi: 10.1002/jobm.3620330411. [DOI] [PubMed] [Google Scholar]
- Sack U., Heinze T. M., Deck J., Cerniglia C. E., Cazau M. C., Fritsche W. Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger. Appl Environ Microbiol. 1997 Jul;63(7):2906–2909. doi: 10.1128/aem.63.7.2906-2909.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sack U., Hofrichter M., Fritsche W. Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett. 1997 Jul 15;152(2):227–234. doi: 10.1111/j.1574-6968.1997.tb10432.x. [DOI] [PubMed] [Google Scholar]
- Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tien M., Kirk T. K. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vazquez-Duhalt R., Westlake D. W., Fedorak P. M. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents. Appl Environ Microbiol. 1994 Feb;60(2):459–466. doi: 10.1128/aem.60.2.459-466.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wariishi H., Valli K., Gold M. H. Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem. 1992 Nov 25;267(33):23688–23695. [PubMed] [Google Scholar]
- Wilson S. C., Jones K. C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut. 1993;81(3):229–249. doi: 10.1016/0269-7491(93)90206-4. [DOI] [PubMed] [Google Scholar]
- Wunder T., Kremer S., Sterner O., Anke H. Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317. Appl Microbiol Biotechnol. 1994 Dec;42(4):636–641. doi: 10.1007/BF00173932. [DOI] [PubMed] [Google Scholar]
- in der Wiesche C., Martens R., Zadrazil F. Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Appl Microbiol Biotechnol. 1996 Dec;46(5-6):653–659. doi: 10.1007/s002530050876. [DOI] [PubMed] [Google Scholar]