Abstract
The role of the third domain of CryIAa, a Bacillus thuringiensis insecticidal toxin, in toxin-induced membrane permeabilization in a receptor-free environment was investigated. Planar lipid bilayer experiments were conducted with the parental toxin and five proteins obtained by site-directed mutagenesis in block 4, an arginine-rich, highly conserved region of the protein. Four mutants were constructed by replacing the first arginine in position 21 by a lysine (R521K), a glutamine (R521Q), a histidine (R521H), or a glutamic acid (R521E). A fifth mutant was obtained by replacing the fourth arginine by a lysine (R527K). Like CryIAa, the mutants formed cation-selective channels. A limited but significant reduction in channel conductance was observed for all mutants except R521H. The effect was more dramatic for the voltage dependence of the channels formed by R521K and R521Q, which was reversed compared to that of the parental toxin. This study provides the first direct evidence of a functional role for domain III in membrane permeabilization. Our results suggest that residues of the positive arginine face of block 4 interact with domain I, the putative pore-forming region of CryIAa.
Full Text
The Full Text of this article is available as a PDF (285.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronson A. I., Wu D., Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J Bacteriol. 1995 Jul;177(14):4059–4065. doi: 10.1128/jb.177.14.4059-4065.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosch D., Schipper B., van der Kleij H., de Maagd R. A., Stiekema W. J. Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management. Biotechnology (N Y) 1994 Sep;12(9):915–918. doi: 10.1038/nbt0994-915. [DOI] [PubMed] [Google Scholar]
- Chen X. J., Lee M. K., Dean D. H. Site-directed mutations in a highly conserved region of Bacillus thuringiensis delta-endotoxin affect inhibition of short circuit current across Bombyx mori midguts. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9041–9045. doi: 10.1073/pnas.90.19.9041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Convents D., Houssier C., Lasters I., Lauwereys M. The Bacillus thuringiensis delta-endotoxin. Evidence for a two domain structure of the minimal toxic fragment. J Biol Chem. 1990 Jan 25;265(3):1369–1375. [PubMed] [Google Scholar]
- Fox J. A. Ion channel subconductance states. J Membr Biol. 1987;97(1):1–8. doi: 10.1007/BF01869609. [DOI] [PubMed] [Google Scholar]
- Ge A. Z., Rivers D., Milne R., Dean D. H. Functional domains of Bacillus thuringiensis insecticidal crystal proteins. Refinement of Heliothis virescens and Trichoplusia ni specificity domains on CryIA(c). J Biol Chem. 1991 Sep 25;266(27):17954–17958. [PubMed] [Google Scholar]
- Geiser M., Schweitzer S., Grimm C. The hypervariable region in the genes coding for entomopathogenic crystal proteins of Bacillus thuringiensis: nucleotide sequence of the kurhd1 gene of subsp. kurstaki HD1. Gene. 1986;48(1):109–118. doi: 10.1016/0378-1119(86)90357-4. [DOI] [PubMed] [Google Scholar]
- Gill S. S., Cowles E. A., Pietrantonio P. V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol. 1992;37:615–636. doi: 10.1146/annurev.en.37.010192.003151. [DOI] [PubMed] [Google Scholar]
- Grochulski P., Masson L., Borisova S., Pusztai-Carey M., Schwartz J. L., Brousseau R., Cygler M. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation. J Mol Biol. 1995 Dec 1;254(3):447–464. doi: 10.1006/jmbi.1995.0630. [DOI] [PubMed] [Google Scholar]
- Haider M. Z., Ellar D. J. Functional mapping of an entomocidal delta-endotoxin. Single amino acid changes produced by site-directed mutagenesis influence toxicity and specificity of the protein. J Mol Biol. 1989 Jul 5;208(1):183–194. doi: 10.1016/0022-2836(89)90094-6. [DOI] [PubMed] [Google Scholar]
- Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
- Lee M. K., Milne R. E., Ge A. Z., Dean D. H. Location of a Bombyx mori receptor binding region on a Bacillus thuringiensis delta-endotoxin. J Biol Chem. 1992 Feb 15;267(5):3115–3121. [PubMed] [Google Scholar]
- Lee M. K., Young B. A., Dean D. H. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem Biophys Res Commun. 1995 Nov 2;216(1):306–312. doi: 10.1006/bbrc.1995.2625. [DOI] [PubMed] [Google Scholar]
- Li J. D., Carroll J., Ellar D. J. Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature. 1991 Oct 31;353(6347):815–821. doi: 10.1038/353815a0. [DOI] [PubMed] [Google Scholar]
- Manivannan K., Ramanan S. V., Mathias R. T., Brink P. R. Multichannel recordings from membranes which contain gap junctions. Biophys J. 1992 Jan;61(1):216–227. doi: 10.1016/S0006-3495(92)81828-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Masson L., Mazza A., Gringorten L., Baines D., Aneliunas V., Brousseau R. Specificity domain localization of Bacillus thuringiensis insecticidal toxins is highly dependent on the bioassay system. Mol Microbiol. 1994 Dec;14(5):851–860. doi: 10.1111/j.1365-2958.1994.tb01321.x. [DOI] [PubMed] [Google Scholar]
- Nishimoto T., Yoshisue H., Ihara K., Sakai H., Komano T. Functional analysis of block 5, one of the highly conserved amino acid sequences in the 130-kDa CryIVA protein produced by Bacillus thuringiensis subsp. israelensis. FEBS Lett. 1994 Jul 18;348(3):249–254. doi: 10.1016/0014-5793(94)00604-0. [DOI] [PubMed] [Google Scholar]
- Schwartz J. L., Garneau L., Masson L., Brousseau R. Early response of cultured lepidopteran cells to exposure to delta-endotoxin from Bacillus thuringiensis: involvement of calcium and anionic channels. Biochim Biophys Acta. 1991 Jun 18;1065(2):250–260. doi: 10.1016/0005-2736(91)90237-3. [DOI] [PubMed] [Google Scholar]
- Schwartz J. L., Garneau L., Savaria D., Masson L., Brousseau R., Rousseau E. Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation- and anion-selective channels in planar lipid bilayers. J Membr Biol. 1993 Feb;132(1):53–62. doi: 10.1007/BF00233051. [DOI] [PubMed] [Google Scholar]
- Schwartz J. L., Juteau M., Grochulski P., Cygler M., Préfontaine G., Brousseau R., Masson L. Restriction of intramolecular movements within the Cry1Aa toxin molecule of Bacillus thuringiensis through disulfide bond engineering. FEBS Lett. 1997 Jun 30;410(2-3):397–402. doi: 10.1016/s0014-5793(97)00626-1. [DOI] [PubMed] [Google Scholar]
- Slatin S. L., Abrams C. K., English L. Delta-endotoxins form cation-selective channels in planar lipid bilayers. Biochem Biophys Res Commun. 1990 Jun 15;169(2):765–772. doi: 10.1016/0006-291x(90)90397-6. [DOI] [PubMed] [Google Scholar]
- Von Tersch M. A., Slatin S. L., Kulesza C. A., English L. H. Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl Environ Microbiol. 1994 Oct;60(10):3711–3717. doi: 10.1128/aem.60.10.3711-3717.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfersberger M. G., Chen X. J., Dean D. H. Site-directed mutations in the third domain of Bacillus thuringiensis delta-endotoxin CryIAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles. Appl Environ Microbiol. 1996 Jan;62(1):279–282. doi: 10.1128/aem.62.1.279-282.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]