Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Oct;63(10):4005–4009. doi: 10.1128/aem.63.10.4005-4009.1997

Physiological basis for the high salt tolerance of Debaryomyces hansenii.

C Prista 1, A Almagro 1, M C Loureiro-Dias 1, J Ramos 1
PMCID: PMC168712  PMID: 9327565

Abstract

The effects of KCl, NaCl, and LiCl on the growth of Debaryomyces hansenii, usually considered a halotolerant yeast, and Saccharomyces cerevisiae were compared. KCl and NaCl had similar effects on D. hansenii, indicating that NaCl created only osmotic stress, while LiCl had a specific inhibitory effect, although relatively weaker than in S. cerevisiae. In media with low K+, Na+ was able to substitute for K+, restoring the specific growth rate and the final biomass of the culture. The intracellular concentration of Na+ reached values up to 800 mM, suggesting that metabolism is not affected by rather high concentrations of salt. The ability of D. hansenii to extrude Na+ and Li+ was similar to that described for S. cerevisiae, suggesting that this mechanism is not responsible for the increased halotolerance. Also, the kinetic parameters of Rb+ uptake in D. hansenii (Vmax, 4.2 nmol mg [dry weight]-1 min-1; K(m), 7.4 mM) indicate that the transport system was not more efficient than in S. cerevisiae. Sodium (50 mM) activated the transport of Rb+ by increasing the affinity for the substrate in D. hansenii, while the effect was opposite in S. cerevisiae. Lithium inhibited Rb+ uptake in D. hansenii. We propose that the metabolism of D. hansenii is less sensitive to intracellular Na+ than is that of S. cerevisiae, that Na+ substitutes for K+ when K+ is scarce, and that the transport of K+ is favored by the presence of Na+. In low K+ environments, D. hansenii behaved as a halophilic yeast.

Full Text

The Full Text of this article is available as a PDF (215.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst-Pauwels G. W. Ion transport in yeast. Biochim Biophys Acta. 1981 Dec;650(2-3):88–127. doi: 10.1016/0304-4157(81)90002-2. [DOI] [PubMed] [Google Scholar]
  2. Gaber R. F. Molecular genetics of yeast ion transport. Int Rev Cytol. 1992;137:299–353. doi: 10.1016/s0074-7696(08)62679-0. [DOI] [PubMed] [Google Scholar]
  3. Garciadeblas B., Rubio F., Quintero F. J., Bañuelos M. A., Haro R., Rodríguez-Navarro A. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet. 1993 Jan;236(2-3):363–368. doi: 10.1007/BF00277134. [DOI] [PubMed] [Google Scholar]
  4. Gómez M. J., Luyten K., Ramos J. The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1996 Jan 15;135(2-3):157–160. doi: 10.1111/j.1574-6968.1996.tb07982.x. [DOI] [PubMed] [Google Scholar]
  5. Haro R., Garciadeblas B., Rodríguez-Navarro A. A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 1991 Oct 21;291(2):189–191. doi: 10.1016/0014-5793(91)81280-l. [DOI] [PubMed] [Google Scholar]
  6. Jia Z. P., McCullough N., Martel R., Hemmingsen S., Young P. G. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast. EMBO J. 1992 Apr;11(4):1631–1640. doi: 10.1002/j.1460-2075.1992.tb05209.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mendoza I., Rubio F., Rodriguez-Navarro A., Pardo J. M. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem. 1994 Mar 25;269(12):8792–8796. [PubMed] [Google Scholar]
  8. Murguía J. R., Bellés J. M., Serrano R. A salt-sensitive 3'(2'),5'-bisphosphate nucleotidase involved in sulfate activation. Science. 1995 Jan 13;267(5195):232–234. doi: 10.1126/science.7809627. [DOI] [PubMed] [Google Scholar]
  9. Márquez J. A., Serrano R. Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett. 1996 Mar 11;382(1-2):89–92. doi: 10.1016/0014-5793(96)00157-3. [DOI] [PubMed] [Google Scholar]
  10. Neves M. L., Oliveira R. P., Lucas C. M. Metabolic flux response to salt-induced stress in the halotolerant yeast Debaryomyces hansenii. Microbiology. 1997 Apr;143(Pt 4):1133–1139. doi: 10.1099/00221287-143-4-1133. [DOI] [PubMed] [Google Scholar]
  11. Norkrans B., Kylin A. Regulation of the potassium to sodium ratio and of the osmotic potential in relation to salt tolerance in yeasts. J Bacteriol. 1969 Nov;100(2):836–845. doi: 10.1128/jb.100.2.836-845.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prior C., Potier S., Souciet J. L., Sychrova H. Characterization of the NHA1 gene encoding a Na+/H+-antiporter of the yeast Saccharomyces cerevisiae. FEBS Lett. 1996 May 27;387(1):89–93. doi: 10.1016/0014-5793(96)00470-x. [DOI] [PubMed] [Google Scholar]
  13. Ramos J., Alijo R., Haro R., Rodriguez-Navarro A. TRK2 is not a low-affinity potassium transporter in Saccharomyces cerevisiae. J Bacteriol. 1994 Jan;176(1):249–252. doi: 10.1128/jb.176.1.249-252.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ramos J., Haro R., Rodríguez-Navarro A. Regulation of potassium fluxes in Saccharomyces cerevisiae. Biochim Biophys Acta. 1990 Nov 16;1029(2):211–217. doi: 10.1016/0005-2736(90)90156-i. [DOI] [PubMed] [Google Scholar]
  15. Rodriguez-Navarro A., Asensio J. An efflux mechanism determines the low net entry of lithium in yeasts. FEBS Lett. 1977 Mar 15;75(1):169–172. doi: 10.1016/0014-5793(77)80078-1. [DOI] [PubMed] [Google Scholar]
  16. Rodríguez-Navarro A., Ortega M. D. The mechanism of sodium efflux in yeast. FEBS Lett. 1982 Feb 22;138(2):205–208. doi: 10.1016/0014-5793(82)80442-0. [DOI] [PubMed] [Google Scholar]
  17. Rodríguez-Navarro A., Ramos J. Dual system for potassium transport in Saccharomyces cerevisiae. J Bacteriol. 1984 Sep;159(3):940–945. doi: 10.1128/jb.159.3.940-945.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  19. Rubio F., Gassmann W., Schroeder J. I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. 1995 Dec 8;270(5242):1660–1663. doi: 10.1126/science.270.5242.1660. [DOI] [PubMed] [Google Scholar]
  20. Smith B. E., O'Day D. H., Proteau G. A. Lithium in the mating response and cell cycle of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1995 Jan 5;206(1):401–407. doi: 10.1006/bbrc.1995.1055. [DOI] [PubMed] [Google Scholar]
  21. Watanabe Y., Miwa S., Tamai Y. Characterization of Na+/H(+)-antiporter gene closely related to the salt-tolerance of yeast Zygosaccharomyces rouxii. Yeast. 1995 Jul;11(9):829–838. doi: 10.1002/yea.320110905. [DOI] [PubMed] [Google Scholar]
  22. Wieland J., Nitsche A. M., Strayle J., Steiner H., Rudolph H. K. The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na+ pump in the yeast plasma membrane. EMBO J. 1995 Aug 15;14(16):3870–3882. doi: 10.1002/j.1460-2075.1995.tb00059.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. van Uden N. Transport-limited fermentation and growth of saccharomyces cerevisiae and its competitive inhibition. Arch Mikrobiol. 1967;58(2):155–168. doi: 10.1007/BF00406676. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES