Abstract
Adherence to hydroxyapatite (HA) was examined as a method to concentrate bacteria from foods. Using HA at a level of 10% and suspensions of an Escherichia coli strain containing 10(9), 10(6), and 10(3) cells per ml, kinetic studies revealed that maximum adherence was attained within 5 min for all cell concentrations and that comparable log reductions (1.0 to 1.5) of cells in suspension were seen regardless of initial cell concentration. Eleven species of spoilage and pathogenic bacteria were found to adhere to HA, with seven species adhering at proportions of greater than 95%. Fluorescent viability staining revealed that cells bound to HA remained viable. There was greater than 92% adherence of indigenous bacteria to HA from three of five 1:10 dilutions of ground beef, indicating promise for the use of HA for concentrating bacteria from meat and other food samples.
Full Text
The Full Text of this article is available as a PDF (697.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott A., Hayes M. L. The conditioning role of saliva in streptococcal attachment to hydroxyapatite surfaces. J Gen Microbiol. 1984 Apr;130(4):809–816. doi: 10.1099/00221287-130-4-809. [DOI] [PubMed] [Google Scholar]
- Beem J. E., Hurley C. G., Nesbitt W. E., Croft D. F., Marks R. G., Cisar J. O., Clark W. B. Fimbrial-mediated colonization of murine teeth by Actinomyces naeslundii. Oral Microbiol Immunol. 1996 Aug;11(4):259–265. doi: 10.1111/j.1399-302x.1996.tb00179.x. [DOI] [PubMed] [Google Scholar]
- Bernardi G., Giro M. G., Gaillard C. Chromatography of polypeptides and proteins on hydroxyapatite columns: some new developments. Biochim Biophys Acta. 1972 Oct 31;278(3):409–420. doi: 10.1016/0005-2795(72)90001-3. [DOI] [PubMed] [Google Scholar]
- Blackburn C. W., Curtis L. M., Humpheson L., Petitt S. B. Evaluation of the Vitek Immunodiagnostic Assay System (VIDAS) for the detection of Salmonella in foods. Lett Appl Microbiol. 1994 Jul;19(1):32–36. doi: 10.1111/j.1472-765x.1994.tb00897.x. [DOI] [PubMed] [Google Scholar]
- Clark W. B., Bammann L. L., Gibbons R. J. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun. 1978 Mar;19(3):846–853. doi: 10.1128/iai.19.3.846-853.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark W. B., Gibbons R. J. Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect Immun. 1977 Nov;18(2):514–523. doi: 10.1128/iai.18.2.514-523.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark W. B., Lane M. D., Beem J. E., Bragg S. L., Wheeler T. T. Relative hydrophobicities of Actinomyces viscosus and Actinomyces naeslundii strains and their adsorption to saliva-treated hydroxyapatite. Infect Immun. 1985 Mar;47(3):730–736. doi: 10.1128/iai.47.3.730-736.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowan M. M., Taylor K. G., Doyle R. J. Energetics of the initial phase of adhesion of Streptococcus sanguis to hydroxylapatite. J Bacteriol. 1987 Jul;169(7):2995–3000. doi: 10.1128/jb.169.7.2995-3000.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons R. J., Etherden I., Moreno E. C. Contribution of stereochemical interactions in the adhesion of Streptococcus sanguis C5 to experimental pellicles. J Dent Res. 1985 Feb;64(2):96–101. doi: 10.1177/00220345850640021801. [DOI] [PubMed] [Google Scholar]
- Hillman J. D., Van Houte J., Gibbons R. J. Sorption of bacteria to human enamel powder. Arch Oral Biol. 1970 Sep;15(9):899–903. doi: 10.1016/0003-9969(70)90163-9. [DOI] [PubMed] [Google Scholar]
- Liljemark W. F., Bloomquist C. Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med. 1996;7(2):180–198. doi: 10.1177/10454411960070020601. [DOI] [PubMed] [Google Scholar]
- Nesbitt W. E., Doyle R. J., Taylor K. G., Staat R. H., Arnold R. R. Positive coooperativity in the binding of Streptococcus sanguis to hydroxylapatite. Infect Immun. 1982 Jan;35(1):157–165. doi: 10.1128/iai.35.1.157-165.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rölla G., Melsen B. Desorption of protein and bacteria from hydroxyapatite by fluoride and monofluorophosphate. Caries Res. 1975;9(1):66–73. doi: 10.1159/000260144. [DOI] [PubMed] [Google Scholar]
- Swaminathan B., Feng P. Rapid detection of food-borne pathogenic bacteria. Annu Rev Microbiol. 1994;48:401–426. doi: 10.1146/annurev.mi.48.100194.002153. [DOI] [PubMed] [Google Scholar]
- Weerkamp A. H., McBride B. C. Adherence of Streptococcus salivarius HB and HB-7 to oral surfaces and saliva-coated hydroxyapatite. Infect Immun. 1980 Oct;30(1):150–158. doi: 10.1128/iai.30.1.150-158.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler T. T., Clark W. B., Lane M. D., Grow T. E. Influence of physicochemical parameters on adsorption of Actinomyces viscosus to hydroxyapatite surfaces. Infect Immun. 1983 Mar;39(3):1095–1101. doi: 10.1128/iai.39.3.1095-1101.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]