Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4164–4170. doi: 10.1128/aem.63.11.4164-4170.1997

Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes.

S Kalmbach 1, W Manz 1, U Szewzyk 1
PMCID: PMC168733  PMID: 9361400

Abstract

A polyphasic approach involving cultivation, direct viable counts, rRNA-based phylogenetic classification, and in situ probing was applied for the characterization of the dominant microbial population in a municipal drinking water distribution system. A total of 234 bacterial strains cultivated on R2A medium were screened for bacteria affiliated with the in situ dominating beta subclass of Proteobacteria. The isolates were grouped according to common features of their cell and colony morphologies, and eight representative strains were used for 16S rRNA sequencing and the development of a suite of strain-specific oligonucleotide probes. Phylogenetic analysis indicated that all of the isolates were hitherto unknown bacteria. Three of them, strains B4, B6, and B8, formed a separate cluster of closely related organisms within the beta 1 subclass of Proteobacteria. In situ probing revealed that (i) 67 to 72% of total bacteria, corresponding to more than 80% of beta-subclass bacteria, could be encompassed with the strain-specific probes and (ii) the dominating bacterial species were culturable on R2A medium. Additionally, two-thirds of the autochthonous drinking water population could be shown to be in a viable but nonculturable (VBNC) state by using a direct viable count approach. The comparison of isolation frequencies with the in situ abundances of the eight investigated strains revealed differences in their culturability, indicating variable ratios of culturable to VBNC cells among the strains. The further characterization of biofilms throughout the distribution network demonstrated strains B6 and B8 to be dominant bacterial strains in groundwater and distribution system biofilms. The other strains could be found at various frequencies in the different parts of the distribution system; several strains appeared exclusively in drinking water biofilms obtained from a house installation system.

Full Text

The Full Text of this article is available as a PDF (258.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alfreider A., Pernthaler J., Amann R., Sattler B., Glockner F., Wille A., Psenner R. Community analysis of the bacterial assemblages in the winter cover and pelagic layers of a high mountain lake by in situ hybridization. Appl Environ Microbiol. 1996 Jun;62(6):2138–2144. doi: 10.1128/aem.62.6.2138-2144.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990 Jun;56(6):1919–1925. doi: 10.1128/aem.56.6.1919-1925.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995 Mar;59(1):143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brosius J., Dull T. J., Sleeter D. D., Noller H. F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol. 1981 May 15;148(2):107–127. doi: 10.1016/0022-2836(81)90508-8. [DOI] [PubMed] [Google Scholar]
  5. Byrd J. J., Xu H. S., Colwell R. R. Viable but nonculturable bacteria in drinking water. Appl Environ Microbiol. 1991 Mar;57(3):875–878. doi: 10.1128/aem.57.3.875-878.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kuznetsov S. I., Dubinina G. A., Lapteva N. A. Biology of oligotrophic bacteria. Annu Rev Microbiol. 1979;33:377–387. doi: 10.1146/annurev.mi.33.100179.002113. [DOI] [PubMed] [Google Scholar]
  7. LeChevallier M. W., Babcock T. M., Lee R. G. Examination and characterization of distribution system biofilms. Appl Environ Microbiol. 1987 Dec;53(12):2714–2724. doi: 10.1128/aem.53.12.2714-2724.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MacRae J. D., Smit J. Characterization of caulobacters isolated from wastewater treatment systems. Appl Environ Microbiol. 1991 Mar;57(3):751–758. doi: 10.1128/aem.57.3.751-758.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Manz W., Szewzyk U., Ericsson P., Amann R., Schleifer K. H., Stenström T. A. In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S rRNA-directed fluorescent oligonucleotide probes. Appl Environ Microbiol. 1993 Jul;59(7):2293–2298. doi: 10.1128/aem.59.7.2293-2298.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martin P., Macleod R. A. Observations on the distinction between oligotrophic and eutrophic marine bacteria. Appl Environ Microbiol. 1984 May;47(5):1017–1022. doi: 10.1128/aem.47.5.1017-1022.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Reasoner D. J., Geldreich E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985 Jan;49(1):1–7. doi: 10.1128/aem.49.1.1-7.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ridgway H. F., Olson B. H. Scanning electron microscope evidence for bacterial colonization of a drinking-water distribution system. Appl Environ Microbiol. 1981 Jan;41(1):274–287. doi: 10.1128/aem.41.1.274-287.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rogers J., Keevil C. W. Immunogold and fluorescein immunolabelling of Legionella pneumophila within an aquatic biofilm visualized by using episcopic differential interference contrast microscopy. Appl Environ Microbiol. 1992 Jul;58(7):2326–2330. doi: 10.1128/aem.58.7.2326-2330.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Roszak D. B., Colwell R. R. Survival strategies of bacteria in the natural environment. Microbiol Rev. 1987 Sep;51(3):365–379. doi: 10.1128/mr.51.3.365-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  16. Staley J. T., Konopka A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol. 1985;39:321–346. doi: 10.1146/annurev.mi.39.100185.001541. [DOI] [PubMed] [Google Scholar]
  17. Tall B. D., Williams H. N., George K. S., Gray R. T., Walch M. Bacterial succession within a biofilm in water supply lines of dental air-water syringes. Can J Microbiol. 1995 Jul;41(7):647–654. doi: 10.1139/m95-088. [DOI] [PubMed] [Google Scholar]
  18. Wagner M., Amann R., Lemmer H., Schleifer K. H. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol. 1993 May;59(5):1520–1525. doi: 10.1128/aem.59.5.1520-1525.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ward N. R., Wolfe R. L., Justice C. A., Olson B. H. The identification of gram-negative, nonfermentative bacteria from water: problems and alternative approaches to identification. Adv Appl Microbiol. 1986;31:293–365. doi: 10.1016/s0065-2164(08)70446-5. [DOI] [PubMed] [Google Scholar]
  20. Zavarzin G. A., Stackebrandt E., Murray R. G. A correlation of phylogenetic diversity in the Proteobacteria with the influences of ecological forces. Can J Microbiol. 1991 Jan;37(1):1–6. doi: 10.1139/m91-001. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES