Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4252–4260. doi: 10.1128/aem.63.11.4252-4260.1997

Characterization of the lacticin 481 operon: the Lactococcus lactis genes lctF, lctE, and lctG encode a putative ABC transporter involved in bacteriocin immunity.

A Rincé 1, A Dufour 1, P Uguen 1, J P Le Pennec 1, D Haras 1
PMCID: PMC168744  PMID: 9361411

Abstract

The lantibiotic lacticin 481 is a bacteriocin produced by Lactococcus lactis strains. The genetic determinants of lacticin 481 production are organized as an operon encoded by a 70-kb plasmid. We previously reported the first three genes of this operon, lctA, lctM, and lctT, which are involved in the bacteriocin biosynthesis and export (A. Rincé, A. Dufour, S. Le Pogam, D. Thuault, C. M. Bourgeois, and J.-P. Le Pennec, Appl. Environ. Microbiol. 60:1652-1657, 1994). The operon contains three additional open reading frames: lctF, lctE, and lctG. The hydrophobicity profiles and sequence similarities strongly suggest that the three gene products associate to form an ABC transporter. When the three genes were coexpressed into a lacticin 481-sensitive L. lactis strain, the strain became resistant to the bacteriocin. This protection could not be obtained when any of the three genes was deleted, confirming that lctF, lctE, and lctG are all necessary to provide immunity to lacticin 481. The quantification of the levels of immunity showed that lctF, lctE, and lctG could account for at least 6% and up to 100% of the immunity of the wild-type lacticin 481 producer strain, depending on the gene expression regulation. The lacticin 481 biosynthesis and immunity systems are discussed and compared to other lantibiotic systems.

Full Text

The Full Text of this article is available as a PDF (497.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abee T. Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett. 1995 Jun 1;129(1):1–10. doi: 10.1016/0378-1097(95)00137-T. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. G., McKay L. L. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl Environ Microbiol. 1983 Sep;46(3):549–552. doi: 10.1128/aem.46.3.549-552.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bardonnet N., Blanco C. 'uidA-antibiotic-resistance cassettes for insertion mutagenesis, gene fusions and genetic constructions. FEMS Microbiol Lett. 1992 Jun 15;72(3):243–247. doi: 10.1016/0378-1097(92)90469-5. [DOI] [PubMed] [Google Scholar]
  5. Chopin A., Chopin M. C., Moillo-Batt A., Langella P. Two plasmid-determined restriction and modification systems in Streptococcus lactis. Plasmid. 1984 May;11(3):260–263. doi: 10.1016/0147-619x(84)90033-7. [DOI] [PubMed] [Google Scholar]
  6. Demel R. A., Peelen T., Siezen R. J., De Kruijff B., Kuipers O. P. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study. Eur J Biochem. 1996 Jan 15;235(1-2):267–274. doi: 10.1111/j.1432-1033.1996.00267.x. [DOI] [PubMed] [Google Scholar]
  7. Dower W. J., Miller J. F., Ragsdale C. W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988 Jul 11;16(13):6127–6145. doi: 10.1093/nar/16.13.6127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dufour A., Thuault D., Boulliou A., Bourgeois C. M., Le Pennec J. P. Plasmid-encoded determinants for bacteriocin production and immunity in a Lactococcus lactis strain and purification of the inhibitory peptide. J Gen Microbiol. 1991 Oct;137(10):2423–2429. doi: 10.1099/00221287-137-10-2423. [DOI] [PubMed] [Google Scholar]
  9. Engelke G., Gutowski-Eckel Z., Kiesau P., Siegers K., Hammelmann M., Entian K. D. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol. 1994 Mar;60(3):814–825. doi: 10.1128/aem.60.3.814-825.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilmore M. S., Segarra R. A., Booth M. C., Bogie C. P., Hall L. R., Clewell D. B. Genetic structure of the Enterococcus faecalis plasmid pAD1-encoded cytolytic toxin system and its relationship to lantibiotic determinants. J Bacteriol. 1994 Dec;176(23):7335–7344. doi: 10.1128/jb.176.23.7335-7344.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Higgins C. F. ABC transporters: from microorganisms to man. Annu Rev Cell Biol. 1992;8:67–113. doi: 10.1146/annurev.cb.08.110192.000435. [DOI] [PubMed] [Google Scholar]
  12. Holo H., Nes I. F. High-Frequency Transformation, by Electroporation, of Lactococcus lactis subsp. cremoris Grown with Glycine in Osmotically Stabilized Media. Appl Environ Microbiol. 1989 Dec;55(12):3119–3123. doi: 10.1128/aem.55.12.3119-3123.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hynes W. L., Friend V. L., Ferretti J. J. Duplication of the lantibiotic structural gene in M-type 49 group A streptococcus strains producing streptococcin A-M49. Appl Environ Microbiol. 1994 Nov;60(11):4207–4209. doi: 10.1128/aem.60.11.4207-4209.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Håvarstein L. S., Diep D. B., Nes I. F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol. 1995 Apr;16(2):229–240. doi: 10.1111/j.1365-2958.1995.tb02295.x. [DOI] [PubMed] [Google Scholar]
  15. Håvarstein L. S., Holo H., Nes I. F. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by gram-positive bacteria. Microbiology. 1994 Sep;140(Pt 9):2383–2389. doi: 10.1099/13500872-140-9-2383. [DOI] [PubMed] [Google Scholar]
  16. Jack R. W., Tagg J. R., Ray B. Bacteriocins of gram-positive bacteria. Microbiol Rev. 1995 Jun;59(2):171–200. doi: 10.1128/mr.59.2.171-200.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karn J., Brenner S., Barnett L., Cesareni G. Novel bacteriophage lambda cloning vector. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5172–5176. doi: 10.1073/pnas.77.9.5172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Karn J., Matthes H. W., Gait M. J., Brenner S. A new selective phage cloning vector, lambda 2001, with sites for XbaI, BamHI, HindIII, EcoRI, SstI and XhoI. Gene. 1984 Dec;32(1-2):217–224. doi: 10.1016/0378-1119(84)90049-0. [DOI] [PubMed] [Google Scholar]
  19. Keilhauer C., Eggeling L., Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol. 1993 Sep;175(17):5595–5603. doi: 10.1128/jb.175.17.5595-5603.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klaenhammer T. R. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 1993 Sep;12(1-3):39–85. doi: 10.1111/j.1574-6976.1993.tb00012.x. [DOI] [PubMed] [Google Scholar]
  21. Klein C., Entian K. D. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol. 1994 Aug;60(8):2793–2801. doi: 10.1128/aem.60.8.2793-2801.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  23. Peschel A., Götz F. Analysis of the Staphylococcus epidermidis genes epiF, -E, and -G involved in epidermin immunity. J Bacteriol. 1996 Jan;178(2):531–536. doi: 10.1128/jb.178.2.531-536.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Piard J. C., Kuipers O. P., Rollema H. S., Desmazeaud M. J., de Vos W. M. Structure, organization, and expression of the lct gene for lacticin 481, a novel lantibiotic produced by Lactococcus lactis. J Biol Chem. 1993 Aug 5;268(22):16361–16368. [PubMed] [Google Scholar]
  25. Piard J. C., Muriana P. M., Desmazeaud M. J., Klaenhammer T. R. Purification and Partial Characterization of Lacticin 481, a Lanthionine-Containing Bacteriocin Produced by Lactococcus lactis subsp. lactis CNRZ 481. Appl Environ Microbiol. 1992 Jan;58(1):279–284. doi: 10.1128/aem.58.1.279-284.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Podlesek Z., Comino A., Herzog-Velikonja B., Zgur-Bertok D., Komel R., Grabnar M. Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol Microbiol. 1995 Jun;16(5):969–976. doi: 10.1111/j.1365-2958.1995.tb02322.x. [DOI] [PubMed] [Google Scholar]
  27. Pridmore D., Rekhif N., Pittet A. C., Suri B., Mollet B. Variacin, a new lanthionine-containing bacteriocin produced by Micrococcus varians: comparison to lacticin 481 of Lactococcus lactis. Appl Environ Microbiol. 1996 May;62(5):1799–1802. doi: 10.1128/aem.62.5.1799-1802.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rince A., Dufour A., Le Pogam S., Thuault D., Bourgeois C. M., Le Pennec J. P. Cloning, expression, and nucleotide sequence of genes involved in production of lactococcin DR, a bacteriocin from lactococcus lactis subsp. lactis. Appl Environ Microbiol. 1994 May;60(5):1652–1657. doi: 10.1128/aem.60.5.1652-1657.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sahl H. G., Jack R. W., Bierbaum G. Biosynthesis and biological activities of lantibiotics with unique post-translational modifications. Eur J Biochem. 1995 Jun 15;230(3):827–853. doi: 10.1111/j.1432-1033.1995.tb20627.x. [DOI] [PubMed] [Google Scholar]
  30. Saris P. E., Immonen T., Reis M., Sahl H. G. Immunity to lantibiotics. Antonie Van Leeuwenhoek. 1996 Feb;69(2):151–159. doi: 10.1007/BF00399420. [DOI] [PubMed] [Google Scholar]
  31. Schwindinger W. F., Warner J. R. DNA sequence analysis on the IBM-PC. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 2):601–604. doi: 10.1093/nar/12.1part2.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Siegers K., Entian K. D. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol. 1995 Mar;61(3):1082–1089. doi: 10.1128/aem.61.3.1082-1089.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Siezen R. J., Kuipers O. P., de Vos W. M. Comparison of lantibiotic gene clusters and encoded proteins. Antonie Van Leeuwenhoek. 1996 Feb;69(2):171–184. doi: 10.1007/BF00399422. [DOI] [PubMed] [Google Scholar]
  34. Simon D., Chopin A. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie. 1988 Apr;70(4):559–566. doi: 10.1016/0300-9084(88)90093-4. [DOI] [PubMed] [Google Scholar]
  35. Stoddard G. W., Petzel J. P., van Belkum M. J., Kok J., McKay L. L. Molecular analyses of the lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl Environ Microbiol. 1992 Jun;58(6):1952–1961. doi: 10.1128/aem.58.6.1952-1961.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Terzaghi B. E., Sandine W. E. Improved medium for lactic streptococci and their bacteriophages. Appl Microbiol. 1975 Jun;29(6):807–813. doi: 10.1128/am.29.6.807-813.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thuault D., Beliard E., Le Guern J., Bourgeois C. M. Inhibition of Clostridium tyrobutyricum by bacteriocin-like substances produced by lactic acid bacteria. J Dairy Sci. 1991 Apr;74(4):1145–1150. doi: 10.3168/jds.S0022-0302(91)78266-0. [DOI] [PubMed] [Google Scholar]
  38. Venema K., Dost M. H., Beun P. A., Haandrikman A. J., Venema G., Kok J. The genes for secretion and maturation of lactococcins are located on the chromosome of Lactococcus lactis IL1403. Appl Environ Microbiol. 1996 May;62(5):1689–1692. doi: 10.1128/aem.62.5.1689-1692.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. de Vos W. M., Kuipers O. P., van der Meer J. R., Siezen R. J. Maturation pathway of nisin and other lantibiotics: post-translationally modified antimicrobial peptides exported by gram-positive bacteria. Mol Microbiol. 1995 Aug;17(3):427–437. doi: 10.1111/j.1365-2958.1995.mmi_17030427.x. [DOI] [PubMed] [Google Scholar]
  40. van de Guchte M., Kok J., Venema G. Distance-dependent translational coupling and interference in Lactococcus lactis. Mol Gen Genet. 1991 May;227(1):65–71. doi: 10.1007/BF00260708. [DOI] [PubMed] [Google Scholar]
  41. van den Hooven H. W., Lagerwerf F. M., Heerma W., Haverkamp J., Piard J. C., Hilbers C. W., Siezen R. J., Kuipers O. P., Rollema H. S. The structure of the lantibiotic lacticin 481 produced by Lactococcus lactis: location of the thioether bridges. FEBS Lett. 1996 Aug 12;391(3):317–322. doi: 10.1016/0014-5793(96)00771-5. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES