Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4267–4271. doi: 10.1128/aem.63.11.4267-4271.1997

Effects of dissolved organic carbon and salinity on bioavailability of mercury.

T Barkay 1, M Gillman 1, R R Turner 1
PMCID: PMC168746  PMID: 9361413

Abstract

Hypotheses that dissolved organic carbon (DOC) and electrochemical charge affect the rate of methylmercury [CH3Hg(I)] synthesis by modulating the availability of ionic mercury [Hg(II)] to bacteria were tested by using a mer-lux bioindicator (O. Selifonova, R. Burlage, and T. Barkay, Appl. Environ. Microbiol. 59:3083-3090, 1993). A decline in Hg(II)-dependent light production was observed in the presence of increasing concentrations of DOC, and this decline was more pronounced at pH 7 than at pH 5, suggesting that DOC is a factor controlling the bioavailability of Hg(II). A thermodynamic model (MINTEQA2) was used to select assay conditions that clearly distinguished among various Hg(II) species. By using this approach, it was shown that negatively charged forms of mercuric chloride (HgCl3-/HgCl(4)2-) induced less light production than the electrochemically neutral form (HgCl2), and no difference was observed between the two neutral forms, HgCl2 and Hg(OH)2. These results suggest that the negative charge of Hg(II) species reduces their availability to bacteria and may be one reason why accumulation of CH3Hg(I) is more often reported to occur in freshwater than in estuarine and marine biota.

Full Text

The Full Text of this article is available as a PDF (188.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belkin S., Smulski D. R., Vollmer A. C., Van Dyk T. K., LaRossa R. A. Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion. Appl Environ Microbiol. 1996 Jul;62(7):2252–2256. doi: 10.1128/aem.62.7.2252-2256.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bienvenue E., Boudou A., Desmazes J. P., Gavach C., Georgescauld D., Sandeaux J., Seta P. Transport of mercury compounds across bimolecular lipid membranes: effect of lipid composition, pH and chloride concentration. Chem Biol Interact. 1984 Jan;48(1):91–101. doi: 10.1016/0009-2797(84)90009-7. [DOI] [PubMed] [Google Scholar]
  3. Burlage R. S., Kuo C. T. Living biosensors for the management and manipulation of microbial consortia. Annu Rev Microbiol. 1994;48:291–309. doi: 10.1146/annurev.mi.48.100194.001451. [DOI] [PubMed] [Google Scholar]
  4. Compeau G. C., Bartha R. Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments. Appl Environ Microbiol. 1987 Feb;53(2):261–265. doi: 10.1128/aem.53.2.261-265.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Compeau G. C., Bartha R. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol. 1985 Aug;50(2):498–502. doi: 10.1128/aem.50.2.498-502.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Condee C. W., Summers A. O. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity. J Bacteriol. 1992 Dec;174(24):8094–8101. doi: 10.1128/jb.174.24.8094-8101.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farrell R. E., Germida J. J., Huang P. M. Biotoxicity of mercury as influenced by mercury(II) speciation. Appl Environ Microbiol. 1990 Oct;56(10):3006–3016. doi: 10.1128/aem.56.10.3006-3016.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilmour C. C., Henry E. A. Mercury methylation in aquatic systems affected by acid deposition. Environ Pollut. 1991;71(2-4):131–169. doi: 10.1016/0269-7491(91)90031-q. [DOI] [PubMed] [Google Scholar]
  9. Guzzo A., DuBow M. S. A luxAB transcriptional fusion to the cryptic celF gene of Escherichia coli displays increased luminescence in the presence of nickel. Mol Gen Genet. 1994 Feb;242(4):455–460. doi: 10.1007/BF00281796. [DOI] [PubMed] [Google Scholar]
  10. Hastings J. W., Potrikus C. J., Gupta S. C., Kurfürst M., Makemson J. C. Biochemistry and physiology of bioluminescent bacteria. Adv Microb Physiol. 1985;26:235–291. doi: 10.1016/s0065-2911(08)60398-7. [DOI] [PubMed] [Google Scholar]
  11. Higgins C. F., Dorman C. J., Stirling D. A., Waddell L., Booth I. R., May G., Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell. 1988 Feb 26;52(4):569–584. doi: 10.1016/0092-8674(88)90470-9. [DOI] [PubMed] [Google Scholar]
  12. King J. M., Digrazia P. M., Applegate B., Burlage R., Sanseverino J., Dunbar P., Larimer F., Sayler G. S. Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science. 1990 Aug 17;249(4970):778–781. doi: 10.1126/science.249.4970.778. [DOI] [PubMed] [Google Scholar]
  13. Rothstein A. Mercurials and red cell membranes. Prog Clin Biol Res. 1981;51:105–131. [PubMed] [Google Scholar]
  14. Selifonova O. V., Eaton R. W. Use of an ipb-lux Fusion To Study Regulation of the Isopropylbenzene Catabolism Operon of Pseudomonas putida RE204 and To Detect Hydrophobic Pollutants in the Environment. Appl Environ Microbiol. 1996 Mar;62(3):778–783. doi: 10.1128/aem.62.3.778-783.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Selifonova O., Burlage R., Barkay T. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol. 1993 Sep;59(9):3083–3090. doi: 10.1128/aem.59.9.3083-3090.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Southworth G. R., Peterson M. J., Turner R. R. Changes in concentrations of selenium and mercury in largemouth bass following elimination of fly ash discharge to a quarry. Chemosphere. 1994 Jul;29(1):71–79. doi: 10.1016/0045-6535(94)90091-4. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES