Abstract
The transformation of indole to indigo by microorganisms expressing styrene monooxygenase (SMO) has been studied. Styrene and indole are structurally very similar, and thus we looked at a variety of styrene-degrading strains for indole transformation to indigo. Two strains, Pseudomonas putida S12 and CA-3, gave a blue color on solid media when grown in the presence of indole. Indole induces its own transformation on solid media but is a poor inducer in liquid media. Styrene is the best inducer of indole transformation in both strains. Arginine represses styrene consumption and indigo formation rates in P. putida S12 compared to phenylacetic acid-grown cells, while the opposite effect is seen for P. putida CA-3. Characterization of an SMO- and styrene oxide isomerase (SOI)-negative transposon mutant of P. putida CA-3 and an SOI-negative N-methyl-N'-nitro-N-nitrosoguanidine mutant of P. putida S12 reveals the involvement of both SMO and SOI in indole transformation to indigo. Both strains stoichiometrically produce high-purity indigo from indole.
Full Text
The Full Text of this article is available as a PDF (162.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bialy H. Biotechnology, bioremediation, and blue genes. Nat Biotechnol. 1997 Feb;15(2):110–110. doi: 10.1038/nbt0297-110. [DOI] [PubMed] [Google Scholar]
- Boyd C., Larkin M. J., Reid K. A., Sharma N. D., Wilson K. Metabolism of Naphthalene, 1-Naphthol, Indene, and Indole by Rhodococcus sp. Strain NCIMB 12038. Appl Environ Microbiol. 1997 Jan;63(1):151–155. doi: 10.1128/aem.63.1.151-155.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerniglia C. E., Freeman J. P., Evans F. E. Evidence for an arene oxide-NIH shift pathway in the transformation of naphthalene to 1-naphthol by Bacillus cereus. Arch Microbiol. 1984 Aug;138(4):283–286. doi: 10.1007/BF00410891. [DOI] [PubMed] [Google Scholar]
- Eaton R. W., Chapman P. J. Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J Bacteriol. 1995 Dec;177(23):6983–6988. doi: 10.1128/jb.177.23.6983-6988.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science. 1983 Oct 14;222(4620):167–169. doi: 10.1126/science.6353574. [DOI] [PubMed] [Google Scholar]
- Hart S., Koch K. R., Woods D. R. Identification of indigo-related pigments produced by Escherichia coli containing a cloned Rhodococcus gene. J Gen Microbiol. 1992 Jan;138(1):211–216. doi: 10.1099/00221287-138-1-211. [DOI] [PubMed] [Google Scholar]
- Hartmans S., van der Werf M. J., de Bont J. A. Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Appl Environ Microbiol. 1990 May;56(5):1347–1351. doi: 10.1128/aem.56.5.1347-1351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill R., Hart S., Illing N., Kirby R., Woods D. R. Cloning and expression of Rhodococcus genes encoding pigment production in Escherichia coli. J Gen Microbiol. 1989 Jun;135(6):1507–1513. doi: 10.1099/00221287-135-6-1507. [DOI] [PubMed] [Google Scholar]
- Keil H., Saint C. M., Williams P. A. Gene organization of the first catabolic operon of TOL plasmid pWW53: production of indigo by the xylA gene product. J Bacteriol. 1987 Feb;169(2):764–770. doi: 10.1128/jb.169.2.764-770.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marconi A. M., Beltrametti F., Bestetti G., Solinas F., Ruzzi M., Galli E., Zennaro E. Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Appl Environ Microbiol. 1996 Jan;62(1):121–127. doi: 10.1128/aem.62.1.121-127.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marqués S., Ramos J. L. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Mol Microbiol. 1993 Sep;9(5):923–929. doi: 10.1111/j.1365-2958.1993.tb01222.x. [DOI] [PubMed] [Google Scholar]
- Murdock D., Ensley B. D., Serdar C., Thalen M. Construction of metabolic operons catalyzing the de novo biosynthesis of indigo in Escherichia coli. Biotechnology (N Y) 1993 Mar;11(3):381–386. doi: 10.1038/nbt0393-381. [DOI] [PubMed] [Google Scholar]
- O'Connor K., Buckley C. M., Hartmans S., Dobson A. D. Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Appl Environ Microbiol. 1995 Feb;61(2):544–548. doi: 10.1128/aem.61.2.544-548.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wubbolts M. G., Reuvekamp P., Witholt B. TOL plasmid-specified xylene oxygenase is a wide substrate range monooxygenase capable of olefin epoxidation. Enzyme Microb Technol. 1994 Jul;16(7):608–615. doi: 10.1016/0141-0229(94)90127-9. [DOI] [PubMed] [Google Scholar]
- Yanofsky C. Attenuation in the control of expression of bacterial operons. Nature. 1981 Feb 26;289(5800):751–758. doi: 10.1038/289751a0. [DOI] [PubMed] [Google Scholar]
- Yen K. M., Karl M. R., Blatt L. M., Simon M. J., Winter R. B., Fausset P. R., Lu H. S., Harcourt A. A., Chen K. K. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J Bacteriol. 1991 Sep;173(17):5315–5327. doi: 10.1128/jb.173.17.5315-5327.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]