Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1997 Nov;63(11):4298–4303. doi: 10.1128/aem.63.11.4298-4303.1997

Synechococcus diversity in the California current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains.

G Toledo 1, B Palenik 1
PMCID: PMC168750  PMID: 9361417

Abstract

Because they are ubiquitous in a range of aquatic environments and culture methods are relatively advanced, cyanobacteria may be useful models for understanding the extent of evolutionary adaptation of prokaryotes in general to environmental gradients. The roles of environmental variables such as light and nutrients in influencing cyanobacterial genetic diversity are still poorly characterized, however. In this study, a total of 15 Synechococcus strains were isolated from the oligotrophic edge of the California Current from two depths (5 and 95 m) with large differences in light intensity, light quality, and nutrient concentrations. RNA polymerase gene (rpoC1) fragment sequences of the strains revealed two major genetic lineages, distinct from other marine or freshwater cyanobacterial isolates or groups seen in shotgun-cloned sequences from the oligotrophic Atlantic Ocean. The California Current low-phycourobilin (CCLPUB) group represented by six isolates in a single lineage was less diverse than the California Current high-phycourobilin (CCHPUB) group with nine isolates in three relatively divergent lineages. The former was found to be the closest known genetic group to Prochlorococcus spp., a chlorophyll b-containing cyanobacterial group. Having an isolate from this group will be valuable for looking at the molecular changes necessary for the transition from the use of phycobiliproteins to chlorophyll b as light-harvesting pigments. Both of the CCHPUB and CCLPUB groups included strains obtained from surface (5 m) and deep (95 m) samples. Thus, contrary to expectations, there was no clear correlation between sampling depth and isolation of genetic groups, despite the large environmental gradients present. To our knowledge, this is the first demonstration with isolates that genetically divergent Synechococcus groups coexist in the same seawater sample.

Full Text

The Full Text of this article is available as a PDF (147.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergsland K. J., Haselkorn R. Evolutionary relationships among eubacteria, cyanobacteria, and chloroplasts: evidence from the rpoC1 gene of Anabaena sp. strain PCC 7120. J Bacteriol. 1991 Jun;173(11):3446–3455. doi: 10.1128/jb.173.11.3446-3455.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brahamsha B. A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol. 1996 May;62(5):1747–1751. doi: 10.1128/aem.62.5.1747-1751.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell L., Carpenter E. J., Iacono V. J. Identification and enumeration of marine chroococcoid cyanobacteria by immunofluorescence. Appl Environ Microbiol. 1983 Sep;46(3):553–559. doi: 10.1128/aem.46.3.553-559.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Douglas S. E., Carr N. Examination of Genetic Relatedness of Marine Synechococcus spp. by Using Restriction Fragment Length Polymorphisms. Appl Environ Microbiol. 1988 Dec;54(12):3071–3078. doi: 10.1128/aem.54.12.3071-3078.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ferris M. J., Muyzer G., Ward D. M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol. 1996 Feb;62(2):340–346. doi: 10.1128/aem.62.2.340-346.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990 May 3;345(6270):60–63. doi: 10.1038/345060a0. [DOI] [PubMed] [Google Scholar]
  7. Giovannoni S. J., Rappé M. S., Vergin K. L., Adair N. L. 16S rRNA genes reveal stratified open ocean bacterioplankton populations related to the Green Non-Sulfur bacteria. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7979–7984. doi: 10.1073/pnas.93.15.7979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Golden S. S., Brusslan J., Haselkorn R. Genetic engineering of the cyanobacterial chromosome. Methods Enzymol. 1987;153:215–231. doi: 10.1016/0076-6879(87)53055-5. [DOI] [PubMed] [Google Scholar]
  9. Gordon D. A., Giovannoni S. J. Detection of stratified microbial populations related to Chlorobium and Fibrobacter species in the Atlantic and Pacific oceans. Appl Environ Microbiol. 1996 Apr;62(4):1171–1177. doi: 10.1128/aem.62.4.1171-1177.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hess W. R., Partensky F., van der Staay G. W., Garcia-Fernandez J. M., Börner T., Vaulot D. Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):11126–11130. doi: 10.1073/pnas.93.20.11126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klenk H. P., Zillig W. DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. J Mol Evol. 1994 Apr;38(4):420–432. doi: 10.1007/BF00163158. [DOI] [PubMed] [Google Scholar]
  12. Palenik B. Cyanobacterial community structure as seen from RNA polymerase gene sequence analysis. Appl Environ Microbiol. 1994 Sep;60(9):3212–3219. doi: 10.1128/aem.60.9.3212-3219.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Palenik B., Haselkorn R. Multiple evolutionary origins of prochlorophytes, the chlorophyll b-containing prokaryotes. Nature. 1992 Jan 16;355(6357):265–267. doi: 10.1038/355265a0. [DOI] [PubMed] [Google Scholar]
  14. Palenik B. Polymerase evolution and organism evolution. Curr Opin Genet Dev. 1992 Dec;2(6):931–936. doi: 10.1016/s0959-437x(05)80118-2. [DOI] [PubMed] [Google Scholar]
  15. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Urbach E., Robertson D. L., Chisholm S. W. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature. 1992 Jan 16;355(6357):267–270. doi: 10.1038/355267a0. [DOI] [PubMed] [Google Scholar]
  17. Waterbury J. B., Willey J. M., Franks D. G., Valois F. W., Watson S. W. A cyanobacterium capable of swimming motility. Science. 1985 Oct 4;230(4721):74–76. doi: 10.1126/science.230.4721.74. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES