Abstract
Accumulation of soluble recombinant hemoglobin (rHb1.1) in Escherichia coli requires proper protein folding, prosthetic group (heme) addition, and subunit assembly. This served as a new model system for the study of the effects of temperature, protein synthesis rates, and protein accumulation rates on protein solubility in E. coli. Fermentation expression of rHb1.1 at 30 degrees C from cultures containing a medium or high globin gene dosage (pBR-based or pUC-based plasmids with rHb1.1 genes under the control of the tac promoter) was compared. A medium gene dosage resulted in rHb1.1 accumulating to approximately 7% of the soluble cell protein, of which 78% was soluble. A high globin gene dosage resulted in a > or = 3-fold increase in total globin to 23 to 24% of the soluble cell protein, but 70% was insoluble. Accumulation of insoluble rHb1.1 began immediately upon induction. The proportion of rHb1.1 from the high globin gene dosage that accumulated as insoluble globin was affected by reducing (i) the inducer concentration and (ii) the temperature. Reducing the inducer concentration reduced globin synthesis up to eightfold but increased the proportion of soluble rHb1.1 to 93%. In contrast, total globin protein synthesis was barely affected by reducing the temperature from 30 to 26 degrees C, while soluble globin accumulation increased > 2-fold to approximately 15% of the soluble cell protein. The contrast between the effects of reducing rates of protein synthesis and accumulation and those of reducing temperature suggests that lower temperature stabilizes one or more folding intermediates. We propose a simplified physical model which integrates protein synthesis, folding, and heme association. This model shows that temperature-dependent apoglobin stability is the most critical factor in soluble rHb1.1 accumulation.
Full Text
The Full Text of this article is available as a PDF (752.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aplin R. T., Baldwin J. E., Cole S. C., Sutherland J. D., Tobin M. B. On the production of alpha, beta-heterodimeric acyl-coenzyme A: isopenicillin N-acyltransferase of Penicillium chrysogenum. Studies using a recombinant source. FEBS Lett. 1993 Mar 15;319(1-2):166–170. doi: 10.1016/0014-5793(93)80060-8. [DOI] [PubMed] [Google Scholar]
- Back K., Yin S., Chappell J. Expression of a plant sesquiterpene cyclase gene in Escherichia coli. Arch Biochem Biophys. 1994 Dec;315(2):527–532. doi: 10.1006/abbi.1994.1533. [DOI] [PubMed] [Google Scholar]
- Baldwin J. M. The structure of human carbonmonoxy haemoglobin at 2.7 A resolution. J Mol Biol. 1980 Jan 15;136(2):103–128. doi: 10.1016/0022-2836(80)90308-3. [DOI] [PubMed] [Google Scholar]
- Carrell R. W., Lehmann H., Hutchison H. E. Haemoglobin Köln (beta-98 valine--methionine): an unstable protein causing inclusion-body anaemia. Nature. 1966 May 28;210(5039):915–916. doi: 10.1038/210915a0. [DOI] [PubMed] [Google Scholar]
- Chalmers J. J., Kim E., Telford J. N., Wong E. Y., Tacon W. C., Shuler M. L., Wilson D. B. Effects of temperature on Escherichia coli overproducing beta-lactamase or human epidermal growth factor. Appl Environ Microbiol. 1990 Jan;56(1):104–111. doi: 10.1128/aem.56.1.104-111.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig T. A., Kumar R. Synthesis and purification of soluble ligand binding domain of the human vitamin D3 receptor. Biochem Biophys Res Commun. 1996 Jan 26;218(3):902–907. doi: 10.1006/bbrc.1996.0160. [DOI] [PubMed] [Google Scholar]
- Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
- Haase-Pettingell C. A., King J. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation. A model for inclusion body formation. J Biol Chem. 1988 Apr 5;263(10):4977–4983. [PubMed] [Google Scholar]
- Hargrove M. S., Barrick D., Olson J. S. The association rate constant for heme binding to globin is independent of protein structure. Biochemistry. 1996 Sep 3;35(35):11293–11299. doi: 10.1021/bi960371l. [DOI] [PubMed] [Google Scholar]
- Hernan R. A., Hui H. L., Andracki M. E., Noble R. W., Sligar S. G., Walder J. A., Walder R. Y. Human hemoglobin expression in Escherichia coli: importance of optimal codon usage. Biochemistry. 1992 Sep 15;31(36):8619–8628. doi: 10.1021/bi00151a032. [DOI] [PubMed] [Google Scholar]
- Hindges R., Hübscher U. Production of active mouse DNA polymerase delta in bacteria. Gene. 1995 Jun 9;158(2):241–246. doi: 10.1016/0378-1119(95)00065-e. [DOI] [PubMed] [Google Scholar]
- Hoffman S. J., Looker D. L., Roehrich J. M., Cozart P. E., Durfee S. L., Tedesco J. L., Stetler G. L. Expression of fully functional tetrameric human hemoglobin in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8521–8525. doi: 10.1073/pnas.87.21.8521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelsall S. R., Kulski J. K. Expression of the major capsid protein of human papillomavirus type 16 in Escherichia coli. J Virol Methods. 1995 May;53(1):75–90. doi: 10.1016/0166-0934(95)00004-e. [DOI] [PubMed] [Google Scholar]
- Kiefhaber T., Rudolph R., Kohler H. H., Buchner J. Protein aggregation in vitro and in vivo: a quantitative model of the kinetic competition between folding and aggregation. Biotechnology (N Y) 1991 Sep;9(9):825–829. doi: 10.1038/nbt0991-825. [DOI] [PubMed] [Google Scholar]
- Klein J., Dhurjati P. Protein aggregation kinetics in an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene. Appl Environ Microbiol. 1995 Apr;61(4):1220–1225. doi: 10.1128/aem.61.4.1220-1225.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komar A. A., Kommer A., Krasheninnikov I. A., Spirin A. S. Cotranslational folding of globin. J Biol Chem. 1997 Apr 18;272(16):10646–10651. doi: 10.1074/jbc.272.16.10646. [DOI] [PubMed] [Google Scholar]
- Kopetzki E., Schumacher G., Buckel P. Control of formation of active soluble or inactive insoluble baker's yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Mol Gen Genet. 1989 Mar;216(1):149–155. doi: 10.1007/BF00332244. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leutzinger Y., Beychok S. Kinetics and mechanism of heme-induced refolding of human alpha-globin. Proc Natl Acad Sci U S A. 1981 Feb;78(2):780–784. doi: 10.1073/pnas.78.2.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Looker D., Abbott-Brown D., Cozart P., Durfee S., Hoffman S., Mathews A. J., Miller-Roehrich J., Shoemaker S., Trimble S., Fermi G. A human recombinant haemoglobin designed for use as a blood substitute. Nature. 1992 Mar 19;356(6366):258–260. doi: 10.1038/356258a0. [DOI] [PubMed] [Google Scholar]
- Looker D., Mathews A. J., Neway J. O., Stetler G. L. Expression of recombinant human hemoglobin in Escherichia coli. Methods Enzymol. 1994;231:364–374. doi: 10.1016/0076-6879(94)31025-4. [DOI] [PubMed] [Google Scholar]
- Luisi B., Shibayama N. Structure of haemoglobin in the deoxy quaternary state with ligand bound at the alpha haems. J Mol Biol. 1989 Apr 20;206(4):723–736. doi: 10.1016/0022-2836(89)90579-2. [DOI] [PubMed] [Google Scholar]
- Netzer W. J., Hartl F. U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature. 1997 Jul 24;388(6640):343–349. doi: 10.1038/41024. [DOI] [PubMed] [Google Scholar]
- Roman L. J., Sheta E. A., Martasek P., Gross S. S., Liu Q., Masters B. S. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8428–8432. doi: 10.1073/pnas.92.18.8428. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider R. G., Ueda S., Alperin J. B., Brimhall B., Jones R. T. Hemoglobin sabine beta 91 (f 7) leu to pro. An unstable variant causing severe anemia with inclusion bodies. N Engl J Med. 1969 Apr 3;280(14):739–745. doi: 10.1056/NEJM196904032801402. [DOI] [PubMed] [Google Scholar]
- Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
- Slabaugh M. B., Davis R. E., Roseman N. A., Mathews C. K. Vaccinia virus ribonucleotide reductase expression and isolation of the recombinant large subunit. J Biol Chem. 1993 Aug 25;268(24):17803–17810. [PubMed] [Google Scholar]
- Thomas J. G., Baneyx F. Protein misfolding and inclusion body formation in recombinant Escherichia coli cells overexpressing Heat-shock proteins. J Biol Chem. 1996 May 10;271(19):11141–11147. doi: 10.1074/jbc.271.19.11141. [DOI] [PubMed] [Google Scholar]
- Wetzel R. Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 1994 May;12(5):193–198. doi: 10.1016/0167-7799(94)90082-5. [DOI] [PubMed] [Google Scholar]
- Williams F. M. A model of cell growth dynamics. J Theor Biol. 1967 May;15(2):190–207. doi: 10.1016/0022-5193(67)90200-7. [DOI] [PubMed] [Google Scholar]
- Wu C., Zhang J., Abu-Soud H., Ghosh D. K., Stuehr D. J. High-level expression of mouse inducible nitric oxide synthase in Escherichia coli requires coexpression with calmodulin. Biochem Biophys Res Commun. 1996 May 15;222(2):439–444. doi: 10.1006/bbrc.1996.0763. [DOI] [PubMed] [Google Scholar]
- von Darl M., Harrison P. M., Bottke W. Expression in Escherichia coli of a secreted invertebrate ferritin. Eur J Biochem. 1994 Jun 1;222(2):367–376. doi: 10.1111/j.1432-1033.1994.tb18875.x. [DOI] [PubMed] [Google Scholar]
